

User's Manual

LQ-200CL

RGB Color & NIR 4CCD Line Scan Camera

> Document Version: Ver.1.5 LQ-200CL_Ver.1.5_Dec2014

注: 本マニュアル記載の内容は改良その他の理由でお断りなく変更する場合があります

はじめに

このたびは、弊社の CCD カメラをお買い上げいただきありがとうございます。

このマニュアルには、CCD カメラをお使いいただくための 設置方法を記載してあります。 内容を良くお読みになり、正しくお使いください。

安全上の注意

絵表示について

このマニュアル 及び製品への表示では、製品を正しくお使いいただき、あなたや他の人への危害や財産への損害を未然に防止するために、いろいろな絵表示をしております。その表示と意味は 次のようになっています。 内容をよくご理解の上本文をお読みください。

警告

この表示を無視して、誤った取り扱いをすると、人が死亡又は重症を追う可能性が 想定される内容を示しています。

注意

この表示を無視して、誤った取り扱いをすると、人が損害を負う可能性が想定される 内容、又は物的損害の発生が想定される内容を示しています。

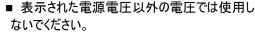
絵表示の例

この記号は、カメラの内部に絶縁されていない危険な電圧が存在することを警告しています。人に電気ショックを感じさせるに十分な量の電圧です。

この記号は、警告を表すものです。 この表示を無視して誤った取り扱いをすると、人が死亡もしくは 重傷を負う可能性があるか、物的損害が発生する発生する可能性があります。

この記号は、禁止の行為であることをお知らせするものです。 図の中や近傍に具体的な禁止内容 (左図の場合は 分解禁止)が描かれています。

この記号は、行為を強制したり指示する内容を告げるものです。図の中に具体的な指示内容(左図の場合は電源プラグをコンセントから抜け)が描かれています。



■ 万一、煙が出ている、変なにおいがするなどの異常 状態のまま使用すると、火災・感電の原因となりま す。すぐに電源を切り、必ず電源プラグをコンセントか ら抜くか、又はブレーカーを切ってください。煙が出なく なるのを確認して販売店にご依頼ください。

火災・感電の原因となります。

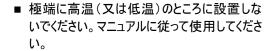
■ 機器のふたは外さないでください。 内部には電圧の 高い部分があり、感電の原因となります。内部の点 検・調整・修理は販売店にご依頼ください。

■ この機器の裏ぶた、キャビネット、カバーは絶対 にはずさないでください。火災・感電の原因と なります。内部の点検・調整・修理は販売店 にご依頼ください。

■ 万一、水や異物が機器の内部に入った場合は、まず 機器の電源を切り、電源プラグをコンセントから抜く か、又はブレーカーを切って販売店にご相談ください。

■ 設置する場合は、工事業者にご依頼ください

そのまま使用すると火災・感電の原因になります。



■ 内部の設定を変更する場合や修理は販売 店にご依頼ください。

■ 万一、この機器を落としたり、破損した場合は、機 器本体の電源を切り、電源プラグをコンセントから抜 くか、又はブレーカーを切って販売店にご相談ください。 そのまま使用すると、火災・感電の原因となります。

■ この機器に水が入ったり、ぬらさないようご注意くださ い。火災・感電の原因となります。 雨天、降雪中、 海岸、水辺でのご使用は特にご注意ください。

■ AC アダプターを使用の際は当社の AC アダプ ター(専用電源)を使用してください。カメラに 合わないACアプターを使用した場合、カメラが 発熱し、火災の原因になることがあります。

■ 風呂場では使用しないでください。 火災・感電の原 因となります。

■ この機器の開口部(通風孔、調整穴など)から内部 に金属類や燃えやすいものなど 異物を差し込んだり、 落とし込んだりしないでください。火災・感電の原因と なります。特に小さいお子様がいる場所ではご注意く ださい。

注意

■ ぐらついた台の上や傾いたところなど不安定な場所 に置かないでください。落ちたり、倒れたりして怪我 の原因となることがあります。

■ 電源プラグを抜くときは、電源コードを 引っ張らないでください。 コードに傷がつき 火災・感電の原因となる

ことがあります。必ず 電源プラグを持って

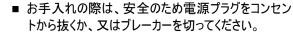
■ 電源コードを熱器具に近づけないでください。コード の被ふくが溶けて、火災・感電の原因となることがあ ります。

ケーブルの配線に際して、電灯やテレビ受像機の 近くにある場合、映像・雑音 が入る場合があります。 その場合は配線や位置を変えてください。

画面の一部にスポット光のような強い光があると、

■ 湿気やほこりの多いところに置かないでください。火 災・感電の原因となることがあります。

ブルーミング・スミアを生じることがあります。 また強い光が入った場合、画面に縦縞が現


抜いてください。

■ 長時間、この機器をご使用にならないときは、安全 のため必ず電源プラグをコンセントから抜くか、または ブレーカーを切ってください。

われることがありますが故障ではありません。 詳しくは「CCD の代表的な特性」の項をご覧くださ

■ 濡れた手で電源プラグを抜き差ししないでください。 感電の原因となることがあります

注意 カメラケーブルを取り扱う場合

■ ケーブルの着脱時にはコネクタ部を保持し、ケーブル にストレスを加えないでください。断線やショートの原 因になります。

カメラ本体とカメラケーブルの着脱は コネクタのガイドを確認の上、行ってください。 コネクタピンが損傷する原因となります。

■ ケーブルに荷重を加えないでください。断線の原因 となります。

ケーブルの着脱時には必ずカメラの電源を切って

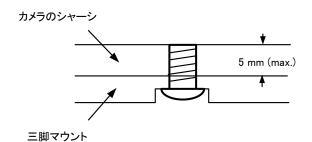
ください。

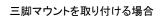
注意 カメラリンクケーブルの接続について

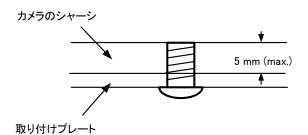
カメラリンクケーブルをカメラに取り付ける際は下記点にご注意ください。

- カメラリンクケーブルについているネジを締める際 ドライバーをお使いの場合は 強く締めすぎない様にしてくださ い。 コネクターをカメラ側のリセプタクルに最後まで差し込んだ上で手でネジを閉めても電気接続上は問題ありま せん。
- ネジを締める際のトルクの目安は 0.291 ニュートン・メートルです(メーカー推奨値)

注意 カメラの設置について


■ 三脚マウントを使う場合


三脚マウントをカメラにとりつける場合、ネジは付属の 専用ネジをお使いください。 それ以外の場合は シャ ーシへの喰い込み深さが5mm以下となるものをお使 いください。それ以上の場合カメラ内部を破損する恐 れがあります。 適応マウントは MP-41 です。



■ 三脚マウントを使わない場合

カメラを壁やシステムに取り付ける場合、ネジはシャーシへの 喰い込み深さが5mm以下となるものをお使いください。 それ以上の場合カメラ内部が破損する恐れがあります。

カメラを直接取り付ける場合

注意 レンズの取り付けについて

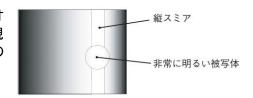
■ ごみの付着にご注意ください

▲ こめの付有にこ注思へにてい レンズをカメラに装着する際 浮遊ごみ等が CCD 面やレンズ背面に付着する恐れがあります。 レンズを装着する場合は そ の直前までカメラやレンズのキャップをはずさずに クリーンな環境の下で作業をお願いします。カメラ・レンズは下に向けごみ等 が付着しないように またレンズの面に手など触れないよう注意しながら 取り付けてください。


注意 レンズについて

レンズの後面のはみ出し部分に関して下記制限 にご注意ください。

- M52 マウント / ニコン F マウント 13mm 以下
- レンズ側に絞りリングのないものはご使用になれま
- 3CCD 用に設計されたレンズをお使いください



CCD の代表的な特性

以下の現象がビデオモニター画面に現れる場合があります。 これは CCD の特性によるものであり、カメラ自体の故障ではありません。

★ 縦スミア

電気照明・太陽や強い反射など非常に明るい被写体のため、ビデオモニター上に縦スミアと呼ばれる現象が現れる場合があります。この現象は CCD に採用されたインターライントランスファーシステムによるものです。

★ エイリアシング

ストライプや 直 線 や 類 似 の パターンを 撮 影 すると、モニタ 上 に 縦 エイリア シング (ジグザグ 状) が 現れる場合があります。

★ ブルミッシュ

強い光が入射したとき、CCD イメージセンサー内のセンサーエレメント(ピクセル)の配列による影響でブルミッシュが発生する場合があります。ただし これは実際の動作には支障をきたしません。

★ パターンノイズ

CCD カメラが高温時、暗い物体を撮影すると、ビデオモニター画面全体に固定のパターンノイズ(ドット)が現れる場合があります。

★ 画素欠陥

CCD の画素欠陥は工場での出荷基準に基づき管理されて出荷されております。

一般的に CCD センサは放射線の影響などによりフォトダイオードにダメージを受け、結果として画素欠陥(白点、黒点)が発生するといわれております。カメラを運搬・保管する場合には放射線の影響を受けないように注意をお願いいたします。 尚カメラを空輸することで放射線の影響を受け易くなるとの報告もありますので 運搬に際しては陸送、船便を使うことをお勧めいたします。また使用周囲温度や カメラ設定(感度アップや長時間露光)などによっても影響されますので カメラの規格範囲でお使いになるようお願いいたします。

保証規定

本商品の保証期間は 工場出荷後1年間です。

保証期間中に正常な使用状態の下で、万一故障が発生した場合は無償で修理いたします。 ただし下記事項に該当する場合は無償修理の対象外です。

- 取扱説明書と異なる不適当な取り扱いまたは使用による故障。
- ◎ 当社以外の修理や改造に起因する故障(EEPROM データ変更も対象になります)。
- ◎ 火災、地震、風水害、落雷その他天変地異などによる故障。
- ◎ お買い上げ後の輸送、移動、落下などによる故障および損傷。
- ◎ 出荷後に発生した CCD 画素欠陥。

本商品を輸出する場合の注意事項

本商品を輸出する場合は「輸出貿易管理令 別表1」ならびに「外国為替管理令 別表 1」で定める品目(リスト規制) および「補完的輸出規制(キャッチオール規制)」に基づき 貨物の該非判定、客観用件(用途、顧客)の該非判定をお願いします。

— 目次 —

1.	1.702		-
2.	標準	冓成	- 4 -
3.	主な特	寺徴	- 4 -
4.	各部(の名称と機能	- 5 -
	4. 1.	各部の名称と機能	- 5 -
	4.2.	リアパネル	- 6 -
5.	ピン	配置と入出力	- 7 -
	5.1.	12Pヒロセコネクタ (DV+12V 電源、RS-232C 通信)	
	5.2.	デジタルインターフェースコネクタ (CameraLink $^{\mathbb{R}}$)	
	5.3.	<u> </u>	
	5.3.1	トリガ入力	
	5.3.2	XEEN 出力	
	5.3.3	カメラリンクインターフェース(ビット割り当て)	
	5.3.4	カメラリンク出力ポート	
	5.3.5	映像出力のビットアロケーション	
6.		- 映像出力のとグラウン・フェン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
υ.		- 宋 1 F · · · · · · · · · · · · · · · · · ·	
		s や 版	
	6.2.1	別TFモート No-Shutter モード/内部トリガ	
	6.2.2	No-Shutter モード/ 外部トリガ	
	6.2.3	Shutter Select モード/ 内部トリガ	
	6.2.4	Shutter Select モード/外部トリガ	
	6.2.5	Pulse Width Control (PWC)モード	
		·リガの条件」	
	6.3.1	外部トリガの最短周期	
	6.3.2	最小トリガパルス幅	
	6.3.3	操作モードと機能一覧	
	6.3.4	トリガモードとオートホワイトバランス操作モード	
7.		の設定	
		コマンド「AHRS」: ワンプッシュ「AWB」の結果の要求	
		コマンド「AL」: オートラインレート リファレンスレベル	
		コマンド 「AR」: ラインレート自動設定	
		コマンド「AW」: ワンプッシュホワイトバランスの実行 (ゲインコントロール)	
		コマンド「AH」: ワンプッシュホワイトバランスの実行(シャッターコントロール)	
	7.6.	コマンド「ARST」 :オートリセットモード	20 -
	7.7.	コマンド「BA」: ビットアロケーション	20 -
	7.8.	1マンド「BI」: ビニング	20 -
	7.9.	コマンド「BL」: マスターブラック	20 -
	7.10.	コマンド「BLR」、「BLB」、「BLIR」: ブラックレベル(Rch, Bch、NIRch)	21 -
	7. 11.	コマンド「BLM」:ブラックレベルモード	21 -
	7. 12.	コマンド「EI」: 露光設定	
	7. 13.	コマンド「GA」: ゲインレベルコントロール	
	7. 14.	コマンド「GAR」「GAB」「GAIR」: ゲインレベル(Rch, Bch、NIRch)	
	7.15.	コマンド「GAR2」「GAG2」「GAB2」「GAIR2」: ファインゲイン(Rch,Gch,Bch,NIRch)	

LQ-200CL

7.16. コマンド「GM」:ゲインモード選択	22 -
7.17. コマンド「LR」: ラインレート	
7.18. コマンド「LUTC」: LUT コントロール	23 -
7.19. コマンド「NR」 : ノイズリダクション	24 -
7.20. コマンド「PBC」: 画素毎のブラック補正	24 -
7.21. コマンド「PBR」: 画素毎のブラック補正の実行とデータの保存	24 -
7.22. コマンド「PBS」: 画素毎のブラック補正の実行結果要求	24 -
7.23. コマンド「PER」「PEG」「PEB」「PEIR」: プログラマブル露光 R,G,B,NIR	24 -
7.24. コマンド「PGC」: 画素感度補正	
7.25. コマンド「PGR」: 画素感度補正の実行	25 -
7.26. コマンド「PGS」: 画素感度補正の実行結果要求	25 -
7.27. コマンド「SDC」: シェーディング補正	
7.28. コマンド「SDR」: シェーディング補正の実行と データの保存	26 -
7.29. コマンド「SDS」: シェーディング補正の実行結果要求	
7.30. コマンド「TG」: トリガソースの選択	27 -
7.31. コマンド「TR」: トリガモード	28 -
7.32. コマンド「TI」: トリガ入力	
7.33. コマンド「TP」: トリガ極性の設定	
7.34. コマンド「TS」: テストパターン	
7.35. コマンド「WB」: ホワイトバランス	
8. シリアル通信とコマンドリスト	30 -
8.1. 通信設定	31 -
8.2. 保存 及び 読み込み機能	
8.3. LQ-200CL コマンドリスト	32 -
9. カメラコントロールツー	
9.1. ソフトウェアのインストール	
9.2. ソフトウェアの立ち上げ	
9.3. カメラの接続	
9.4. カメラのコントロール画面	
9.5. LUT の設定	38 -
9.6. 各メニュー	39 -
9.6.1 File メニュー	
9.6.2 Settings メニュー	
9.6.3 Line correction メニュー	39 -
9.6.4 Gamma メニュー	
9.6.5 Help メニュー	
10. 外観図と寸法	41 -
11. 仕様	
11.1. LQ-200CL 感度特性	
11.2. 仕様	
変更履歴	45 -

1. 概要

LQ-200CL は 2048画素のラインセンサーをRGB及び近赤外用に4本使用した4板式ラインセンサーカラーカメラです。色分解には新開発のダイクロイックミラープリズムを使用しております。ピクセルクロックは40MHz、秒最大19、048ラインの高速スキャンが可能です。 映像はカメラリンク経由でR,G,Bおよび NIR 8ビット又は10ビット出力です。カメラ又は外部トリガ等の設定はカメラリンク又はヒロセ12ピンコネクタ経由で行われます。

LQ-200CL は従来の RGB カラー映像では確認しきれなかったキズ・汚れや欠陥を近赤外映像で確認でき果物、野菜といった農産物の検査や基板、工業用部品の検査など様々な分野での検査にご使用いただけます。

マニュアルの最新バージョンは <u>www.jai.com</u> からダウンロードすることが出来ます。また 最新のカメラコントロールツールも www.jai.com からダウンロードすることが出来ます。

2. 標準構成

カメラ本体 x 1 センサー保護キャップ x 1

3. 主な特徴

- 2048 画素のラインセンサーを R、G、B および近赤外用として4本使用した4板式カメラで色解像度、 色再現性に優れた可視領域の映像とともに近赤外領域の映像もしっかりと撮ることができます
- ピクセルレートは 40MHz、標準ラインレートは 52.5μs 秒最大 19048 ラインの高速スキャンが 可能です
- 標準被写体照度は 2800 ルックス (レンズ F2設定、7800K 光源下、ラインレート 600μs)
- No-Shutter, Shutter Select 及び PWC の各モードに対応
- 出力は CameraLink[®]で R,G,B,NIR 32 ビット(8Bitx4), 又は 40 ビット(10Bitx4)に対応しています
- S/N の劣化なく 感度を一定に保てるラインレート自動設定機能を搭載
- 各種セットアップ機能

画素感度補正回路(RGB 及び NIR チャンネル画素毎に白黒感度が補正できます)

フラットシェーディング補正回路

カラーシェーディング補正

ワンプシュホワイトバランス回路

LUT ガンマ補正

テストパターン発生器内蔵(カラーバー、グレー 2種類、ホワイト)

ノイズリダクション機能(ON/OFF機能)

- -3dB から+12dB までのマスターゲインコントロール
- 4000K から 9000K までの広範囲のホワイトバランスコントロール ならびに ファインゲインによる 微調整が可能
- 外部トリガが一定期間以上入力されない場合内部トリガで動作するオートリセット機能
- ビニング機能
- レンズマウントは標準は M52 マウント、ニコン F マウントも選択できます
- トリガ入力、同期系出力並びに通信は Camera Link 又はヒロセ 12P 経由で可能
- リアパネルの LED による動作表示
- 90x90x120(WHD), 1050g の小型軽量設計

M52 マウントについて: LQ-200CL は新しく M52 マウントを標準マウントとして採用しております。 このマウントは日本インダストリアルイメージング協会が AIA,EMVA と協力して制定したマシンビジョン用レンズに関するガイドライン(JIIA LER-004-2010 各イメージサイズ区分に対する推奨のメカニカルイ

ンターフェース)で大型センサー用マウントとして推奨されているものです

4. 各部の名称と機能

4.1. 各部の名称と機能

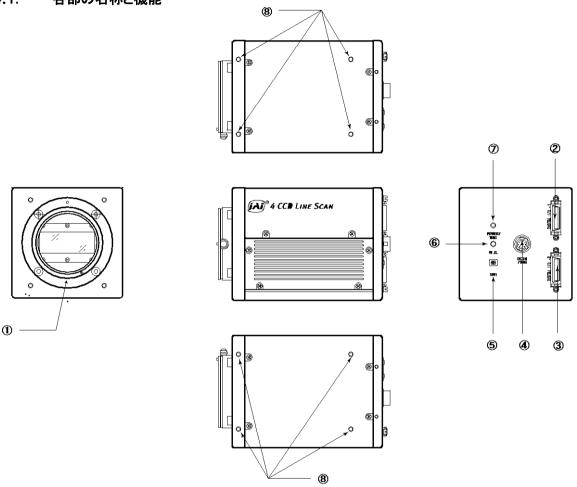


図1. 各部の名称

1 レンズマウント M52 マウント(注 1) 2 26P マルチコネクタ Part1 カメラリンク用(注 2) 3 26P マルチコネクタ Part2 カメラリンク用(注 2)

4 12P コネクタ トリガ、RS232C 通信 及び DC+12V 電源入力用

5 ディップスイッチ SW-1 (詳細は 4.2 章参照) 6 プッシュボタン ワンプッシュホワイトバランス用

7 LED 電源、トリガ入力、動作表示(詳細は 4.2 章参照)

8 取り付け穴 深さ 5.5mm±0.2mm(注 3)

注 1 : M52 マウントレンズは レンズ後部突き出し量(ねじ込み部分)が 14mm 以下のものをご使用ください。

注 2 : カメラリンクケーブルを接続する際 スクリューを閉めるのにドライバーを使って過度の力を加えないようにしてください。カメラリンクの座が破損する恐れがあります。 安全のため加えるトルクは 0.291 ニュートンメートル以内にしてください(メーカー推奨値)。 手で締めても十分な強度を得れますので 手でお締めになることをお勧めいたします。

注 3 : 取り付け穴の深さは 5.5mm です。使用ネジのカメラシャーシへのネジ込み深さが 5.5±0.2mm 以内のものを ご使用ください。 5.7mm 以上の場合は カメラの内部を破損する恐れがあります。

4.2. リアパネル

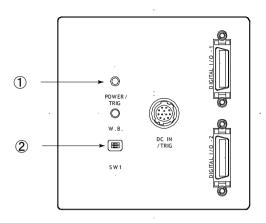


図 2. リアパネル

① LED 表示

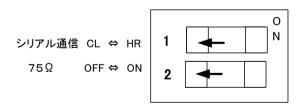
● オレンジの点灯 : 通常動作不可 および内部調整中

1) 電源投入後初期化中 (約800ms)

2) ワンプッシュ ホワイトバランス調整中

● 緑の点灯 : 動作可能(通電)。 動作可能、トリガ入力なし。

* 緑の点滅 : 動作可能、トリガ入力中


注) 外部からトリガが入力されていても No-Shutter Internal および Shutter-Select Internal モードでは点滅しません。 また点滅の期間は外部トリガの入力期間とは一致しません。

② DIP スイッチ

SW1機能

No	機能	機能設定	
NO	1955 FIE	ON	OFF
1	通信切換	Hirose 12Pin	Camera link (CC1)
2	外部トリガ信号入力終端切換	75 Ω	TTL

注:工場出荷設定はどちらも「OFF」です

工場設定

図 3. DIP スイッチ

5. ピン配置と入出力

5.1. 12P ヒロセコネクタ (DV+12V 電源、RS-232C 通信)

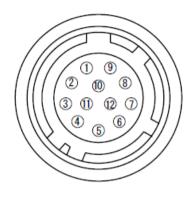


図 4. 12P ヒロセコネクタ (Type: HR10A-10R-12PB)

No.	信号名	備考
1	GND	
2	DC(+12V) IN	
3	GND	
4	Reserved	外部接続不可
5	GND	
6	RxD in	RS-232C
7	TxD out	RS-232C
8	GND	
9	XEEN OUT	
10	Trigger IN	
11	DC(+12V) IN	
12	GND	

適合ケーブル側コネクタ: HIROSE Type:HR10A-10P-12S

5.2. デジタルインターフェースコネクタ (CameraLink®)

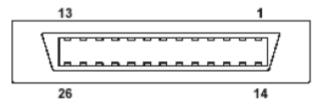


図 5. カメラリンク(Type: 26P MRD コネクタ 3M 10226-1A10PL)

適合コネクタ/ケーブル : ケーブル Ass'y 14B26-SZLB-xxx-OLC (標準型) xxx はケーブル長を表し 0.5m から 10m が適合ケーブル長

ケーブルに関する注意事項

CameraLink 規格に適合していないケーブル 及び 14B26-SZ3B-xxx-03C(細径型)、14B26-SZ3B-xxx-04C(高屈曲型) 使用時は 伝送可能なケーブル長が制限されます。

Port1 (32Bit, 40 Bit)

Pin No	In/Out	Name	Note
1,14		Shield	GND
2(-),15(+)	0	TxOUT0	
3(-),16(+)	0	TxOUT1	Data out
4(-),17(+)	0	TxOUT2	
5(-),18(+)	0	TxClk	CL 用 clock
6(-),19(+)	0	TxOUT3	Data out
7(+),20(-)		SerTC (RxD)	LVDS Serial Control
8(-),21(+)	0	SerTFG (TxD)	LVD3 Serial Control
9(-),22(+)		CC1 (Trigger)	
10(+),23(-)		CC2(Reserved)	
11,24		N.C	
12,25		N.C	
13,26		Shield	GND

Port 2 (40 Bit 出力時使用)

Pin No	In/Out	Name	Note
1,14		Shield	GND
2(-),15(+)	0	TxOUT0	
3(-),16(+)	0	TxOUT1	Data out
4(-),17(+)	0	TxOUT2	
5(-),18(+)	0	TxClk	CL 用 clock
6(-),19(+)	0	TxOUT3	Data out
7(+),20(-)		N.C	
8(-),21(+)		И.С	
9(-),22(+)		N.C	
10(+),23(-)		N.C	
11,24		N.C	
12,25		N.C	
13,26		Shield	GND

5.3. 入力及び出力

5.3.1 トリガ入力

コマンド設定「TI=1」で 12Pコネクタの 10 番ピンがトリガ入力になります。トリガ入力はAC結合です。パルス幅が長い場合のことを考えて入力回路はフリップフロップ構成になっておりトリガパルスの立上がり、立下り時の正極性または負極性の微分パルスによって動作します。トリガの極性はコマンド「TP」で変更できます。トリガ入力は4V±2VでTTLですが、ディップスイッチ SW1によって75 Ωで終端来ます(12P 入力のみ可能)。

またトリガ入力はカメラリンク経由に変更することも可能です(設定 TI=0)。

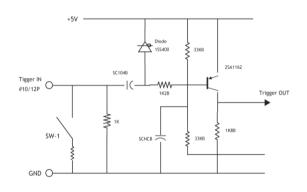


図 6. トリガ入力(12ピン Hirose)

5.3.2 XEEN 出力

ヒロセ 12Pコネクタの 9 番ピンは XEEN 出力で 75Ω 相補型エミッタフォロワー回路です。電源は 5V、出力レベルは無終端時 4V 以上です。 極性は Hirose12 ピンコネクタからは常に負極性で出力され、Camera link からは常に正極性で出力されます。

どちらも極性を変更することはできません。 "XEEN"は負極性を表します。

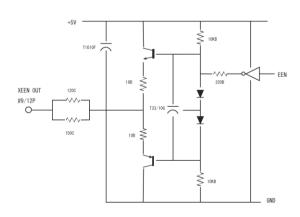
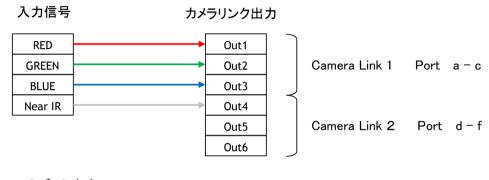


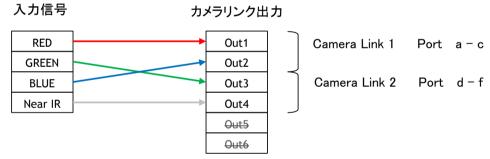
図 7. XEEN 回路(12ピン Hirose)

5.3.3 カメラリンクインターフェース(ビット割り当て)

LQ-200CL はカメラリンク標準に準拠しております。 ビット割り当ては以下のとおりです。


	8bitx4 出力	年1世にて837より。	Connector	
Port/Signal	時	10bitx4 出力時		Pin Name
		Out1_D0	1	-
Port A0 Port A1	Out1_D0 Out1 D1	Out1_D0	1	Tx0 Tx1
Port A2	Out1_D1	Out1_D1	1	Tx2
Port A3	Out1_D2	Out1_D3	1	Tx3
Port A4	Out1_D3	Out1_D3	1	Tx4
Port A5	Out1_D5	Out1_D4	1	Tx6
Port A6	Out1_D6	Out1_D6	1	Tx27
Port A7	Out1_D7	Out1_D0	1	Tx5
Port B0	Out2_D0	Out1_D8	1	Tx7
Port B1	Out2_D1	Out1_D9	1	Tx8
Port B2	Out2_D2	×	1	Tx9
Port B3	Out2_D3	×	1	Tx12
Port B4	Out2_D4	Out2_D8	1	Tx13
Port B5	Out2_D5	Out2_D9	1	Tx14
Port B6	Out2_D6	×	1	Tx10
Port B7	Out2_D7	×	1	Tx11
Port C0	Out3_D0	Out2_D0	1	Tx15
Port C1	Out3_D1	Out2_D1	1	Tx18
Port C2	Out3_D2	Out2_D2	1	Tx19
Port C3	Out3_D3	Out2_D3	1	Tx20
Port C4	Out3_D4	Out2_D4	1	Tx21
Port C5	Out3_D5	Out2_D5	1	Tx22
Port C6	Out3_D6	Out2_D6	1	Tx16
Port C7	Out3_D7	Out2_D7	1	Tx17
Port D0	Out4_D0	Out4_D0	2	Tx0
Port D1	Out4_D1	Out4_D1	2	Tx1
Port D2	Out4_D2	Out4_D2	2	Tx2
Port D3	Out4_D3	Out4_D3	2	Tx3
Port D4	Out4_D4	Out4_D4	2	Tx4
Port D5	Out4_D5	Out4_D5	2	Tx6
Port D6	Out4_D6	Out4_D6	2	Tx27
Port D7	Out4_D7	Out4_D7	2	Tx5
Port E0	×	Out3_D0	2	Tx7
Port E1	×	Out3_D1	2	Tx8
Port E2	×	Out3_D2	2	Tx9
Port E3	×	Out3_D3	2	Tx12
Port E4	×	Out3_D4	2	Tx13
Port E5	×	Out3_D5	2	Tx14
Port E6	×	Out3_D6	2	Tx10
Port E7	×	Out3_D7	2	Tx11
Port F0	×	Out3_D8	2	Tx15
Port F1	×	Out3_D9	2	Tx18
Port F2	×	×	2	Tx19
Port F3	×	×	2	Tx20
Port F4	×	Out4_D8	2	Tx21
	1			

Port F5	×	Out4_D9	2	Tx22
Port F6	×	×	2	Tx16
Port F7	×	×	2	Tx17
LVAL 1			1	Tx24
FVAL 1			1	Tx25
LVAL 2			2	Tx24
FVAL 2			2	Tx25
DVAL			1	Tx26
EEN			1	Tx23


5.3.4 カメラリンク出力ポート

LQ-200CL ではR, G, B及びNIRの 4 チャンネルの信号を取り扱います。 8 ビット出力と 10 ビット出力では取りだすポートが異なります。

8ビット出力

10 ビット出力

5.3.5 映像出力のビットアロケーション

CCD out	Digital 8Bit (LSB)	Digital 10Bit (LSB)
Black	8	32
200mV	222	890
230mV	255	1023

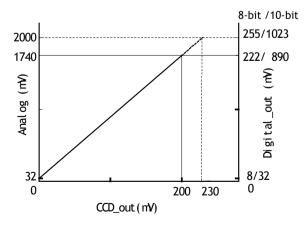


図 8. 映像出力

6. 機能と操作

6.1. 基本機能

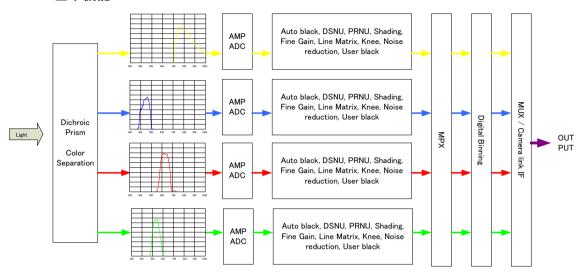


図 9. 信号の流れ

LQ-200CL は プリズムに ラインセンサー 4本を使用した 4CCD カメラです。

露光の間 入力された光は フォトダイオードで電荷に変換されます(下図のアクティブピクセル1から N=2048)。 転送ゲート(Transfer Gate)は フォトダイオードからシフトレジスターへの電荷の転送を制御します。 転送ゲートの動作中は露光サイクルを中止します。そして電荷を水平レジスターに転送し 新しい露光が開始します。 映像ラインはその後ピクセル1から読み出されます。 露光時間は 通常はラインの周期と同じです(No-Shutter モード)。 露光制御ゲートを使うことによって 露光時間は個々にライン周期より短く設定することが出来ます。このことによりラインレートとは別に露光時間を設定することが出来ます。

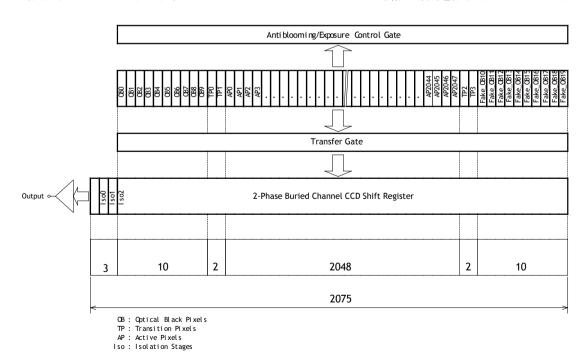


図 10. センサーレイアウト

6.2. 動作モード

LVAL : Line Valid DVAL : Data Valid

LQ-200CL は3つ動作モードをもっています。 No-Shutter モード、 Shutter-Select モード、 そして PWC (Pulse Width Control)モードです。

以下 3つのモードについて説明いたします。 映像出力の詳細は 図8の通りで 全モードに共通です。

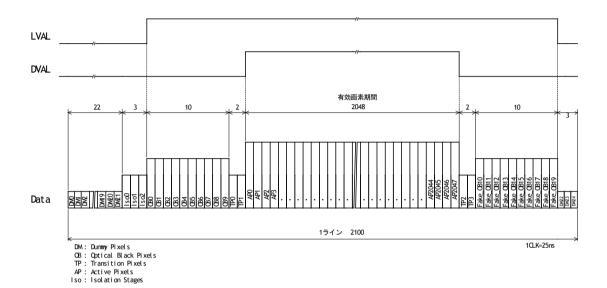


図 11. ビデオ出力 タイミング

6.2.1 No-Shutter モード/内部トリガ

コマンド設定 TR=0. 「No-Shutter モード/内部トリガ」は、カメラ内部で発生させるトリガで連続読み出しをおこないます。 このモードでは蓄積時間はトリガ間隔(ラインレート)に等しく、トリガ間隔(ラインレート)を長く設定することにより高い感度を得ることができます。 ラインレートは 1L から1024L まで 1クロック(25ns)単位で可変することが出来ます。 この設定はシリアル通信で

おこないます。 またコマンド AR=0 の設定(ワンプッシュ自動ラインレート)をすることで S/N を損なうことなく 感度を最適に保持するように 自動的にラインレートを設定します。

機能設定	トリガモード	TR=0
	トリガ種類(内部)	TG=0

ラインレート可変 LR=2100~2150400 clk

関連機能

ラインレート自動設定 AR=0

オートラインレート参照値 AL=0~1023

ワンプッシュホワイトバランス WB

使用上の重要な注意事項

• このモードにおける One Push ホワイトバランス動作(WB=0,AW=0)は以下の通りです。 Gain コントロールだけ行います。

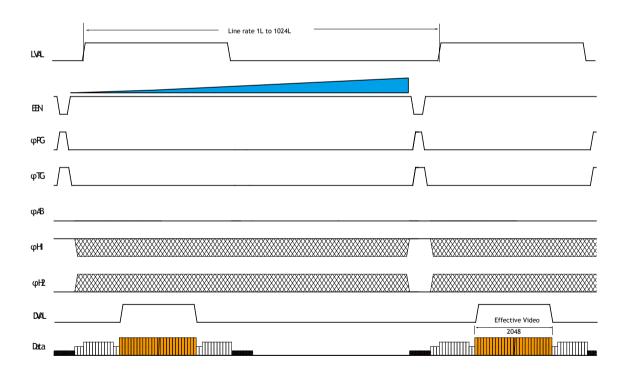


図 12 No-Shutter モード/内部トリガ

6.2.2 No-Shutter モード/ 外部トリガ

コマンド TR=0.「No-Shutter モード/外部トリガ」は、外部から入力されたトリガ信号により 映像の蓄積と読出しを行います。 露光は外部トリガの周期と同じで トリガ間隔を長くすることにより高い感度を得ることが出来ます。

機能設定	トリガモード	TR=0
	トリガソース(外部)	TG=1
	トリガ入力	TI=0,1
	トリガ間隔	52.6us ~

- このモードにおける One Push ホワイトバランス動作(WB=0,AW=0)は以下の通りです。 Gain コントロールだけ行います。
- トリガの最短周期は 52.6µs です。

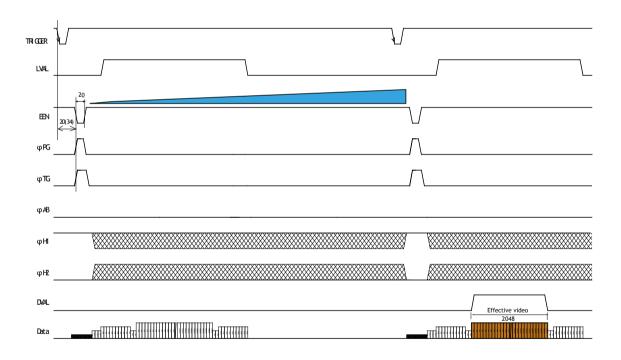


図 13. No-Shutter モード/ 外部トリガ

6.2.3 Shutter Select モード/ 内部トリガ

コマンド TR=1. 「Shutter Select モード/内部トリガ」は、ラインレートと露光時間を個々に制御できます。 カメラはラインレートで設定した周期で動作します。 露光時間はシャッタ値でコントロールされます。

機能設定 トリガモード TR=1

トリガソース(内部) TG=0

ラインレート可変 LR=52.6 ょ(2104 clk) ~ 53.683ms(2150400clk)

RB シャッタ同期(G に対し) EI=O(R,G,B,NIR 独立) EI=1(G に同期)

電子シャッタ(プログラマブル露光)

PER/PEG/PEB/PEIR=2~2150400 Clk

- One Push ホワイトバランスをとる場合 シャッタを使用する(コマンド: AH) 又はゲインを使用する(コマンド: AW) かは 状況に応じて運用します。 また リアパネルの AW スイッチを使用する場合は 常に ゲインによるホワイトバランスになります。
- EEN は 最長露光のチャネルに合わせて出力されます。
- シャッター動作の最長値は 設定したトリガ間隔になります。

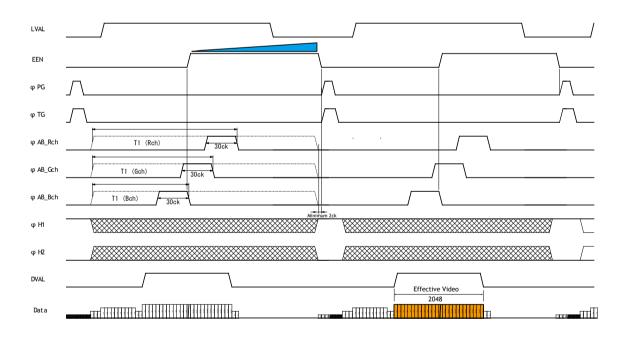


図 14. Shutter Select モード/内部トリガ

6.2.4 Shutter Select モード/ 外部トリガ

コマンド TR=1. 「Shutter Select モード/外部トリガ」は、外部から供給されるトリガで蓄積開始・読み出しをおこないます。 ラインレートは 外部トリガでコントロールされます。 露光は シャッター値によって コントロールされます。

機能設定 トリガモード TR=1

トリガソース(外部) TG=1

RB シャッタ同期(G に対し) EI=O(R,G,B,NIR 独立) EI=1(G に同期)

電子シャッタ(プログラマブル露光)

PER/PEG/PEB/PEIR =2~2150400 Clk

トリガ間隔 52.6us ~

- One Push ホワイトバランスをとる場合 シャッタを使用する(コマンド: AH) 又はゲインを使用する(コマンド: AW) かは 状況に応じて運用します。 また リアパネルの AW スイッチを使用する場合は 常に ゲインによるホワイトバランスになります。
- One Push ホワイトバランス実行中(リアパネルLED:オレンジ点灯中)は、実使用時と同じ周期のトリガを連続して入力する必要があります。
- EEN は露光の長いチャネルに合わせて出力されます。
- シャッター動作の最長値は 入力するトリガ周期となります。

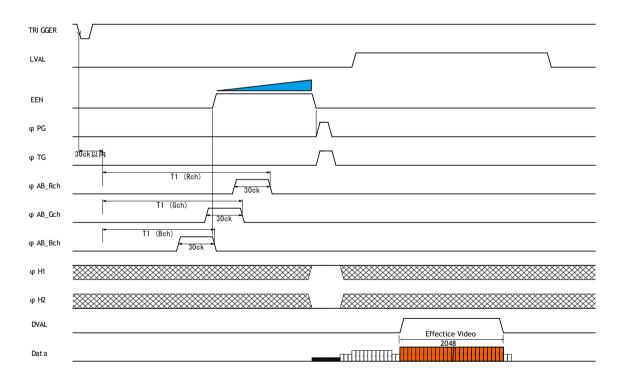


図 15. Shutter Select モード/外部トリガ

6.2.5 Pulse Width Control (PWC)モード

コマンド TR=2. 「Pulse Width Control モード」は、外部から供給されるトリガで蓄積・読み出しをおこないます。 このモードの蓄積時間は供給されるトリガのパルス幅に依存します。

機能設定 トリガモード TR=2

トリガ間隔 52.6μs ~

入力可能なパルス幅 TTL 入力時(12P) 52.6µs ~

カメラリンク入力 52.6μs ~

- このモードでは電子シャッタは使用できません。
- このモードにおける One Push ホワイトバランス動作(WB=0,AW=0)は以下の通りです。 Gain コントロールだけ行います。
- One Push ホワイトバランス実行中(リアパネルLED:オレンジ点灯中)は、実使用時と同じ周期のトリガを連続して入力する必要があります。

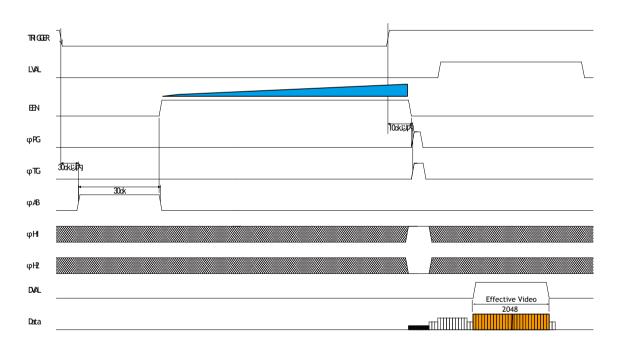


図 16. PWC モード

6.3. トリガの条件」

6.3.1 外部トリガの最短周期

	最短トリガ周期
No-Shutter/ 外部トリガ	C1 + 52.5 µs
Shutter Select/外部トリガ	C1 + 52.5 µs
PWC	Exposure+ C2

 $C1 = 0.1 \mu s$ $C2 = 52.6 \mu s$

6.3.2 最小トリガパルス幅

	Camera Link	Hirose 12ピン
No-Shutter/外部トリガ	500 ns	5 μs
Shutter Select/外部トリガ	500 ns	5 μs
PWC	52.6µs	52.6µs

6.3.3 操作モードと機能一覧

	機能							
	トリカ゛	ビニング	画素感度	シェーティング	ワンプ [°] ッシュ	ゲイン	トリガ間隔	電子
			補正	補正	ホワイトバランス	コントロール	可変	シャッタ
							(蓄積可変)	
No-	内部	0	0	0	0	0	〇(注1)	×
Shutter	外部	0	0	0	0	0	〇(注1)	×
Shutter	内部	0	0	0	0	0	〇(注2)	0
Select	外部	0	0	0	0	0	〇(注2)	0
PWC	外部	0	0	0	0	0	-	×

(注1) 蓄積時間は トリガ間隔になります

(注2) 蓄積時間は 蓄積設定値になりますが 最長時間は トリガ間隔になります。

6.3.4 トリガモードとオートホワイトバランス操作モード

			コントロール	
	トリガ	マニュアル	ワンプッシュ	ワンプッシュ
			ゲイン	シャッター
No-Shutter	内部	ゲインのみ	0	×
	外部	ゲインのみ	0	×
Chuttar Calast	内部	0	0	0
Shutter Select	外部	0	0	0
PWC	内部	ゲインのみ	0	×

7. カメラの設定

この章では LQ-200CL コマンドリストに記載されている略語を 順に説明します。

7.1. コマンド「AHRS」: ワンプッシュ「AWB」の結果の要求

このコマンドはワンプッシュオートホワイトバランスの実行結果を送り返します。

0:オートホワイトとれず

1 : 完了

2 : エラー1 G チャネル入力オーバー3 : エラー2 G チャネル入力不足

4 : エラー3 時間切れ

7.2. コマンド「ALI: オートラインレート リファレンスレベル

AR(ラインレート自動設定)コマンドを実行するときの「輝度目標値」です。「AL」はカメラリンク 出力設定が 32 ビットでも 40 ビットの場合でも 0 から 1023 で同じです。

設定 : 0 ~ 1023

対応モード: No-Shutter モード/内部トリガ

Shutter Select モード/内部トリガ

関連コマンド: AR (自動ラインレート設定)

7.3. コマンド「AR」: ラインレート自動設定

ラインレートは 1L から1024L まで可変できます。 自動設定機能は 被写体の明るさが変わった場合に自動的に ラインレートを 可変して 感度を一定に保ちます。 ゲインをあげる場合に比べ ラインレートをのばす(蓄積時間が長くなる)場合は S/N が劣化しません。 G チャネルが基準となりラインレートが変化しますが それに応じて R,Bも ホワイトバランスを保つようにラインレートが変化します。

設定 : 0

対応モード: No- Shutter モード/内部トリガ

Shutter Select モード/内部トリガ

関連コマンド : AL

注意事項

● 設定した値はカメラに保存し次回電源立ち上げ以降もその値を反映することができます。

7.4. コマンド「AWI: ワンプッシュホワイトバランスの実行 (ゲインコントロール)

この操作はリアパネルに配置したスイッチ及びシリアル通信により実行可能です。

ワンプッシュホワイトバランスの調整時間は約3秒以内で、実行中状態表示用 LED はオレンジ点 灯状態になります。

設定 :0

対応モード:全モード

関連機能:コマンド「WB」、リアパネルプッシュボタン

注意事項

- ◆光源の色温度が調整範囲を超えている場合、適切な設定がなされない場合があります。
- 設定を保存し、次回電源投入以降も設定を反映することができます。
- 外部トリガを使用する動作モードにおいてもこの機能を利用することができます。

7.5. コマンド「AH」: ワンプッシュホワイトバランスの実行(シャッターコントロール)

AH コマンドは R,G,B,NIR 各チャネル個々の蓄積時間(シャッター)を変えてホワイトバランスをとる機能です。 調整時間は約3秒以内で、実行中は状態表示用 LED がオレンジ点灯状態になります。

設定 : 0

対応モード: Shutter Select Mode

関連機能 : コマンド「WB」

7.6. コマンド「ARST」:オートリセットモード

このモードは 外部トリガ時約 53msec 以上トリガ信号が入力されない場合 次のトリガ信号がくるまで自動的に内部トリガモード(ラインレートは約 53µs)に切り替える機能です。このモードの場合トリガがない場合も内部トリガで動作しておりますので外部トリガが入力されると直ちに映像の出力が可能となります。 Shutter-select モード時は トリガが入力されるとすぐに露光を開始し終了後映像を出力します。 No-shutter モード時は トリガが入力されるとすぐに露光を開始しますが映像の出力は次のトリガが入力した後になります。 尚「オートリセットモード」ではトリガの入力がない期間は DVAL,EEN,映像は出力されず LVAL だけが出力されます。工場出荷設定は OFF です。

設定:0=OFF, 1=ON

7.7. コマンド「BA」: ビットアロケーション

このコマンドはデジタル出力を 32 ビット(8ビット x4)で出すか 40 ビット(10ビット x4)で出すか の選択を行います。 内部プロセスは12ビットの A/D を採用しています。

設定 : 0=32 ビット 1=40 ビット

対応モード: すべて

7.8. コマンド「BI」: ビニング

この機能は、隣り合った2画素を混合読み出しすることにより、ラインレートを変更せずに感度を約2倍にする機能です。この時、解像度は約1/2になります。

この機能への切り替えはシリアル通信によりおこないます。

設定 : O=OFF、1=ON

対応モード: すべて

注意事項

設定を保存し、次回電源投入以降も設定を反映することができます。

7.9. コマンド「BL」: マスターブラック

この機能は、映像レベルに関係なく、黒レベルを任意の値に設定する機能です。

調整の方法は「マスタートラッキング」方式または「個別調整(Individual)」の 2 種類があります。 また LQ-200CL は黒レベル自動クランプ機能を持っております。アナログクランプ回路でダミー画 素の信号レベルを一定レベルにクランプした後デジタル変換しデジタルクランプ回路で OB レベル を 32LSB(8LSB)にクランプし OB レベルを一定に保持します。この機能は常時働いています。

マスタートラッキング:

設定・可変範囲: Master: 0 ~255(0 LSB~64(16)LSB)(10 ビット出力時)

注:()内は8Bit 出力時の値

Individual(個別設定):

設定・可変範囲: Gch :0 ~255(0 LSB~64(16)LSB)(10 ビット出力時)

注:()内は8Bit 出力時の値

関連コマンド:「BLR」,「「LB」、「BLIR」、「BLM」

対応モード: すべて

注意事項

設定を保存し、次回電源投入以降も設定を反映することができます。

7.10. コマンド「BLR」、「BLB」、「BLIR」: ブラックレベル(Rch, Bch、NIRch) コマンド BL とともに各チャネルのブラックを調整します。

マスタートラッキング

設定・可変範囲:-128~127 (-32~32LSB) (10 ビット出力時)

(Gch 設定値に対して上記補正を行います)

Individual(個別設定)

設定・可変範囲:0~255 (0~64LSB) (10 ビット出力時)

7.11. コマンド「BLM」:ブラックレベルモード

ブラックレベルの調整方法を選択します。

設定 : 0=マスタートラッキングモード

1=Individual(個別調整)

注記事項

工場出荷設定は「0」マスタートラッキングモードです

7.12. コマンド「EI」: 露光設定

このコマンドは 露光の設定を R,G,B,NIR 独立して設定するか Gを設定して R,B,NIR を G に追従させるか の選択を行います。S/N を劣化させずにホワイトバランスをとることが出来ます。

設定 : O=OFF (R,G,B,NIR 独立して設定)

1=R,B,NIR をGにトラッキングさせる

関連機能 : コマンド PER,PEG,PEB,PEIR プログラマブル露光

対応モード: Shutter select モード(内部、外部)

7.13. コマンド「GA」: ゲインレベルコントロール

このコマンドでゲインを実際に調整します。 ゲインの調整には「マスタートラッキング」方式と「個別調整(Individual)」方式があり選択はコマンド「GM」ゲインモードで行います。このゲイン設定はアナログで可変範囲は 以下の通りです。1LSB は 0.03dB です。

設定•可変範囲

マスタートラッキングモード:

Master(G)= $-132 \sim 429(-3 dB \sim +12 dB)$

個別調整(Individual)モード:

G = $-363 \sim 660 (-9dB \sim +18dB)$

関連コマンド: 「GAR」「GAB」「GAIR」「GM」

対応モード: すべて

注意事項

この可変範囲は色温度 7800K の照明を使用した場合のものです。この色温度以外の照明条件で設

定した場合は可変できる範囲が制限されます。

7.14. コマンド「GAR」「GAB」「GAIR」: ゲインレベル(Rch, Bch, NIRch)

コマンド「GA」とともに R、B、NIRの各ゲインを任意に設定したい場合やワンプッシュホワイトバランス調整後の微調整をおこなうときに利用します。 制御はシリアル通信によりおこないます。 1LSB は 0.03dB です。

設定•可変範囲

マスタートラッキングモード:

R.B.NIR 共 = -231 ~231(-6dB~+6dB)

個別調整(Individual)モード:

R,B,NIR 共 = -363 ~ 660 (-9dB ~+18dB)

関連コマンド : 「GA」「GM」 対応モード : すべて

注記事項

- •「GA」「GAR」「GAB」の可変範囲は色温度 7800K の光源を基準とした可変範囲です。この基準となる色温度以外の光源で調整した場合は 任意で可変できる範囲は制限されます。
- 設定を保存し、次回電源投入以降も設定を反映することができます。

7.15. コマンド「GAR2」「GAG2」「GAB2」「GAIR2」:ファインゲイン(Rch,Gch,Bch,NIRch)

ファインゲインはリニアーなデジタルゲインです。

可変範囲 :x0.8 (6554/8192)~ x1.2(9830/8192) (R,G,B,NIRch 共)

設定値は 6554 から 9830

7.16. コマンド「GM」 : ゲインモード選択

ゲインモードの方法を選択します。

設定:0=マスタートラッキングモード

1=Individual モード

注記事項

工場出荷設定は「O」マスタートラッキングモードです。

7.17. コマンド「LR」: ラインレート

この機能はラインレートを1L(2100clk)より長く設定することを可能にします。

それによりラインスキャンスピードを被写体のスピードに合わせたり、露光を長くすることにより感度を上げることが可能になります。

設定 : 2100~2150400

(52.5us(1L)~53.683(1024L)ms まで 25ns 単位で可変可)

対応モード : No-Shutter 内部トリガモード

Shutter-select 内部トリガモード

7.18. コマンド「LUTC」: LUT コントロール

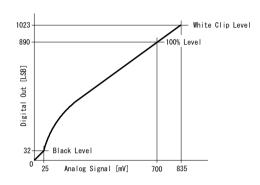
LQ-200Cl は内部にLUT(ルックアップテーブル)を持っており 任意のガンマ設定可能です。 LUTコントロールでは ガンマ 0.45 または LUTを選択することができます。工場の出荷設定 はガンマOFFです。

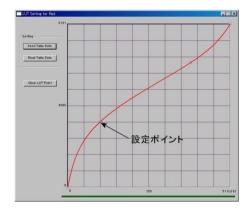
設定:0=OFF, 1=0.45, 2=User

7=0.45

このモードではR, G, B及びNIRともに同じ感度カーブが設定されます。

CCD out	Analog Signal *	Digital Out(32bit)	Digital Out(40bit)
Black	Setup 3.6%, 25mV	8LSB	32LSB
200mV	700mV	222LSB	890LSB
230mV ↑	800mV	255LSB	1023LSB




図 18. LUT 特性

≱User

このモードではR, G, B及びNIRを各々独立して設定することができます。

設定範囲 :0 ~ 8191 LSB(200%)

設定ポイント数:512

7.19. コマンド「NR」 :ノイズリダクション

信号に重畳しているノイズ成分のうち 16LSB(4LSB)以下の成分を除去します。空間周波数の 劣化を最小に抑えています。 改善効果は被写体にもよりますが最大で 3dB 位です。

() 内は 8 ビット出力時

設定:0=ON,1=OFF

7.20. コマンド「PBCI: 画素毎のブラック補正

画素毎の黒レベルのばらつき補正の選択を行います。

設定:O=補正機能使用せず (デフォルト)

1=工場設定 2=ユーザー設定

7.21. コマンド「PBR」: 画素毎のブラック補正の実行とデータの保存

画素毎の黒レベルのばらつきを補正します。 調整は入射光を遮断して行います。

調整する場合は画素ゲインの調整の前に行うことをお勧めいたします。

設定 : 0で実行 設定(PBC) : 2に設定

注記事項

黒レベルは 露光時間(特に長時間露光や 低ラインレート)によって影響を受けます。 したがって 実際の設定条件下で 補正を実行することをお勧めいたします。

7.22. コマンド「PBS」: 画素毎のブラック補正の実行結果要求

この機能はブラック補正を実行した結果がどうであったかを表示します。

結果 : 0=完了せず

1=完了

2=エラー (映像が明るすぎる)3=エラー (映像が暗すぎる)4=エラー (タイムオーバー)

7.23. コマンド「PER」「PEG」「PEB」「PEIR」: プログラマブル露光 R,G,B,NIR

このコマンドにより R, G, B、NIR 各チャネルの 露光時間を個々に設定することが出来ます。 このモードは Shutter Select モードの場合のみ 有効です。(6.2章参照)

設定 : 50 ns(2clock) から 53,683 ms(2150400 clock) まで

25 ns ステップで設定可

関連機能 : EI=O R、G、B、NIR 独立 または EI=1 Gchに連動

対応モード: Shutter Select (内部・外部)

注記事項

実際の露光時間は下記の通りとなります。

露光時間(ns) = 25ns x (繰返し周期(clk) —(T1(clk)+21(clk))

ここで

繰り返し周波数は 設定したラインレート 又は トリガ間隔

T1は プログラマブル露光の設定値, 21clk は 固定値です

尚 R, G, B、NIR 各チャネルの中で 最長の露光時間で EENが出力されます。

7.24. コマンド「PGC」: 画素感度補正

この機能は ここの画素の感度のばらつきを均一に補正します。 これはコマンド「PGR」によって 実行されます。 補正データはユーザー領域に保存されます。

画素感度補正のアルゴリズムは No-Shutter モードと Shutter-select モードで異なります。モードを変更する場合は再度使用するモードで画素補正を行ってください。 尚 工場設定には Shutter-select 時の設定が保存されています。

設定:0=補正機能使用せず (デフォルト)

1=工場設定 2=ユーザー設定

関連コマンド : 「PGR」 対応モード : すべて

7.25. コマンド「PGR」: 画素感度補正の実行

この機能は、センサーの画素間輝度バラツキを補正する機能です。

この機能への切り替えはシリアル通信によりおこないます。

画素感度補正は工場出荷時に補正されていますが、より正確に補正するには周辺環境も含めた 実動作状態で補正を実行するのが効果的です。 この機能を実行する場合は 前項のコマンド 「PGC」を2に設定しておいてください。

設定 : 0で実行

関連コマンド:「PGC」を2に設定

注意事項

- 設定を保存し、次回電源投入以降も設定を反映することができます。
- ●この機能は動作モードに依存しません。
- «画素感度補正のやり方»
- 準備:被写体はフラットな白い平面を用意します。照明によるシェーディングを除くため均一に照らします。映像のレベルは飽和しない程度のレベルに設定してください。またレンズを操作可能な状況であればデフォーカスしてください。 尚補正の前にカメラを30分ほどウォーミングアップしてください。 最適な設定には使用状態で行うことが必要です。補正を実行する前にゲインとラインレートの設定をお願いします。
- 手順:コマンド PGC を「2」に設定し この状態で PGR コマンドを「0」に設定し画素感度補正を実行します。

尚 シェーディング補正も行う場合は最初に画素感度補正を行った後シェーディング補正を 実行してください。

7.26. コマンド「PGS」: 画素感度補正の実行結果要求

この機能は 画素感度補正を実行した結果がどうであったかを表示します。

結果 : 0=完了せず

1=完了

2=エラー (映像が明るすぎる)3=エラー (映像が暗すぎる)4=エラー (タイムオーバー)

7.27. コマンド「SDC」: シェーディング補正

シェーディング補正モードの選択を行います。

設定:0=補正機能使用せず (デフォルト)

1=工場設定

2=ユーザー設定

関連コマンド: 「PGR」「SDR」「SDS」

7.28. コマンド「SDRI: シェーディング補正の実行と データの保存

この機能は、レンズ・照明を含んだ光学系とカメラ内部で発生するシェーディングを同時に補正するためのものです。 補正は以下の2つの方法が選択できます。

フラットシェーディング補正を使うか カラーシェーディング補正を使うかは SDR コマンドで設定します。

設定 : O=フラットシェーディング補正の実行とデータ保存

1=カラーシェーディング補正の実行とデータの保存

A) フラットシェーディング補正: コマンド「SDR=0」

この機能は R,G,B および NIR 信号をそれぞれフラットに補正します。補正できる輝度範囲は1ライン上の一番信号レベルが高い部分と比較して-30%以内です。この機能はシリアル通信により ON/OFF する事が可能です。

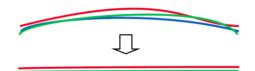


図 19. フラットシェーディング補正概念図

«シェーディング補正のやり方»

設定:シェーディング補正選択 SDC=2 フラットシェーディング補正実行 SDR=0

準備:被写体はフラットな白い平面を用意します。照明によるシェーディングを除くため均一に照らします。尚補正を行う前にカメラを30分ほどウォーミングアップしてください。

手順:コマンド SDC を「2」に設定します。この状態で SDR コマンドを「0」に設定しフラットフィールドシェーディング補正を実行します。

尚 画素感度補正も同時に実行する場合はまず画素感度補正を行った後 シェーディング補 正を実行してください。

注記事項

- ●使用する光学系や光源によっては完全に補正できないことがあります。
- ●工場出荷時に、弊社規定条件で補正したデータが書き込まれています(SDC=1)。

弊社規定条件 周囲温度 :25℃

光源:弊社標準光源

レンズ: A1 Nikkor 35mm F2 (最大口径比 F1.4)

- 設定を保存し、次回電源投入以降も設定を反映することができます。
- ●この機能は動作モードに依存しませんが、実使用状態で補正をおこなうと効果的です。

B) カラーシェーディング補正 : コマンド「SDR=1」

この機能は Green 信号を基準とし、Red、Blue および NIR 信号を Green 信号に合わせる補正をおこないます。 この補正では Green 信号に傾斜が有る場合、Red、Blue および NIR 信号も Green と同じ傾斜になります。

設定: シェーディング補正実行 SDR=1

図 20. カラーシェーディング補正概念図

«シェーディング補正のやり方»

設定:シェーディング補正選択 SDC=2 カラーシェーディング補正実行 SDR=1

準備:被写体はフラットな白い平面を用意します。照明によるシェーディングを除くため均一に照らします。尚補正を行う前にカメラを30分ほどウォーミングアップしてください。

手順:コマンド SDC を「2」に設定します。この状態で SDR コマンドを「1」に設定しカラーシェーディング補正を実行します。

尚 画素感度補正も同時に実行する場合はまず画素感度補正を行った後 シェーディング補 正を実行してください。

注記事項

- 設定を保存し、次回電源投入以降も設定を反映することができます。
- ●この機能は動作モードに依存しませんが、実使用状態で補正をおこなうと効果的です。
- ●この機能はカメラ内部に工場での設定データを持っておりませんので この機能を使用する場合は SDR=1 で 実行する必要があります。
- 7.29. コマンド「SDS」: シェーディング補正の実行結果要求

この機能はシェーディング補正を実行した結果がどうであったかを表示します。

結果 : 0=完了せず

1=完了

2=エラー (映像が明るすぎる)3=エラー (映像が暗すぎる)4=エラー (タイムオーバー)

7.30. コマンド「TG」: トリガソースの選択

この機能は 内部トリガ を使用するか 外部トリガを使用するかの選択を行います。

設定 : O=内部トリガ

1=外部トリガ

7.31. コマンド「TR」: トリガモード

用途に応じてカメラのトリガモードを選択します。

設定 : O=No-Shutter モード

: 1=Shutter Select モード

: 2=PWC モード

7.32. コマンド「TII: トリガ入力

外部トリガは Hirose12 ピン(TI=1)と Camera Link (TI=0)から入力することができます。これらの入力は同時に利用することはできません。

シリアル通信の切り替えは リアパネル上のディップスイッチ SW1(図17参照)で トリガモード(TR) の切替はシリアル通信によりおこないます

設定 : 0=カメラリンクコネクタ

1=Hirose12ピンコネクタ

また 外部トリガ入力をカメラ内部で終端(75Ω)することができます。

設定はディップスイッチ SW1 によりおこないます。尚この機能は Hirose12 ピンコネクタ経由の入力に対してのみ有効です。

OFF ON
シリアル通信
75Ω終端

工場出荷設定

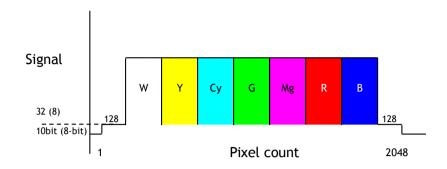
図 21. ディップスイッチ SW1

7.33. コマンド「TP」: トリガ極性の設定

設定 : O=Active Low (デフォルト)

1 = Active High

7.34. コマンド「TS」: テストパターン


この機能により セットアップやトラブルシューティングをする際有効な テスト信号を出力します。 テスト信号実行中は映像の出力はできません。

設定 : O=OFF (電源を入れた状態では OFF です)

1=カラーバー 2=グレー 1 3=グレー 2 4=白(890LSB)

注意事項

- ●この機能をカメラの動作初期状態として保存することはできません。
- •()内の数値は8Bit 出力時です

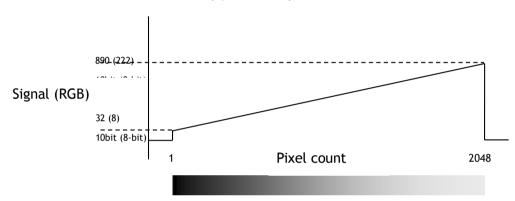


図 23. グレー 1

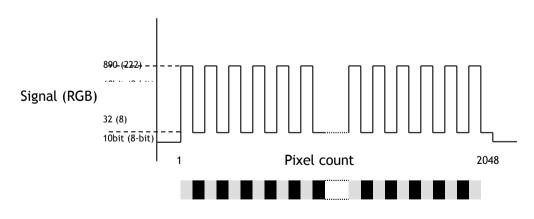


図 24. グレー 2

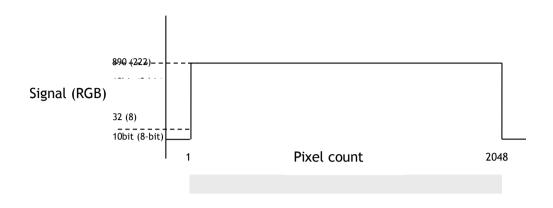


図 25. 白 (890LSB)

7.35. コマンド「WB」: ホワイトバランス

ホワイトバランスは Green と Red, Green と Blue のレベル差を計算し、差がなくなるように R Gain と B Gain を調整します。ワンプッシュホワイトバランスと Gain 操作によるマニュアルホワイトバランスが可能です。ファインゲインも合わせ使用することができますのでより精度の高い設定が可能です。コマンド「WB」はホワイトバランスの設定方法を選択します。

設定 : O=マニュアル/ワンプッシュホワイトバランス

1=4000K 2=4600K 3=5600K

対応モード: すべて

関連コマンド: 「AW」オートホワイト

「GAR」「GAB」 マニュアルゲイン (Rch, Bch)

8. シリアル通信とコマンドリスト

このカメラは、コントロール用のシリアル通信を Hirose12 ピン経由の RS232C と Camera Link 経由の LVDS で通信することが可能です。標準通信レートは 9600bps です。

Hirose12 ピンと Camera Link のシリアル通信は同時に利用することはできません。

通信切り替えはリアパネル上内のディップスイッチ SW1 によりおこないます。

出荷設定は Camera Link に設定されています。

8.1. 诵信設定

Baud Rate	9600	
Data Length	8bit	
Start Bit	1bit	
Stop Bit	1bit	
Parity	Non	
Xon/Xoff Control	Non	

Echo Back EB=1

ON の場合 カメラは通信が正常であることを返信します

Status ST

このコマンドを受信した場合 カメラは すべての機能に対する現在の設定状況を 送り返します。

Help HP

このコマンドを受信した場合カメラはすべての機能に対する HELP リストを送り返します。

Version Number VN

このコマンドを受信した場合 カメラはファームウエアのバージョンを3桁の数字で送り返します

Camera ID ID

このコマンドを受信した場合 カメラは 製造番号である カメラ ID を送り返します

Model Name MD

このコマンドを受信した場合 カメラは モデル名を 送り返します

User ID UD

このコマンドで ユーザーは 識別のための 16 桁の文字を設定しメモリー出来ます。

8.2. 保存 及び 読み込み機能

下記コマンドは カメラの EEPROM にカメラ設定を保存又は読み込むためのものです。

Load Settings LI

このコマンドは保存された前のデータをカメラに読み出します。ユーザー設定はカメラの EEPROM に 3 つ保存できます。 工場設定もまた1つ保存されます。最後に使用された設定が次の電源投入時の初期設定になります。

Save Settings SA

このコマンドは実際のカメラ設定をカメラ EEPROM の 1 から 3 のユーザー領域に保存します。工場設定は変更できません。

EEPROM AREA EA

このコマンドを受信すると カメラは 最後に使用したユーザー領域を戻します。

8.3. LQ-200CL コマンドリスト

0.5	Command Name Format Parameter Remarks							
_			raidilletei	Kelliai Ks				
Α-	A - General settings and useful commands.							
EB	Echo Back	EB=[Param.] <cr><lf> EB?<cr><lf></lf></cr></lf></cr>	0=Echo off, 1=Echo on	電源投入時 Off				
ST	Camera Status Request	ST? <cr><lf></lf></cr>		現在の設定の表示				
НР	Online Help Request	HP? <cr><lf></lf></cr>		有効なコマンドリストの 取得				
VN	Firmware Program Version Request	VN? <cr><lf></lf></cr>		3 digits (e.g) 100 = Version 1.00				
PV	FPGA Program Version Request	PV? <cr><lf></lf></cr>		3 digits (e.g) 100 = Version 1.00				
ID	Camera ID Request	ID? <cr><lf></lf></cr>		工場設定				
MD	Model Name Request	MD? <cr><lf></lf></cr>		工場設定				
UD	User ID UD=[Param.] <cr><lf> UD?<cr><lf></lf></cr></lf></cr>		ユーザー設定。最大 16 英数字					
В-	Line Rate, Expos	sure						
LR	Line Rate	LR=[Param.] <cr><lf> LR?<cr><lf></lf></cr></lf></cr>	2100 to 2150400 clocks - 1 clock is 25ns	TG=0 で有効				
AR	One-push auto line rate set	AR=[Param.] <cr><lf> AR?<cr><lf></lf></cr></lf></cr>	0=Activate one-push auto line rate set	TG=0 で有効				
AL	Auto line rate reference level	AL=[Param.] <cr><lf> AL?<cr><lf></lf></cr></lf></cr>	0 to 1023					
EI	RB Exposure interlocked with G	EI=[Param.] <cr><lf> EI?<cr><lf></lf></cr></lf></cr>	0=Off (independent) 1=On (interlocked)	TR=1 で有効				
PE R	Programmable Exposure - Red	PER=[Param.] <cr><lf> PER?<cr><lf></lf></cr></lf></cr>	2 to 2150400 clocks - 1 clock is 25ns	TR=1 で有効				
PE	Programmable	PEG=[Param.] <cr><lf></lf></cr>	2 to 2150400 clocks	TR=1 で有効				
G	Exposure - Green	osure - Green PEG? <cr><lf> - 1 clock is 25ns</lf></cr>		1N-1 CAM				
PE B	Programmable Exposure - Blue	PEB=[Param.] <cr><lf> PEB?<cr><lf></lf></cr></lf></cr>	2 to 2150400 clocks - 1 clock is 25ns	TR=1 で有効				
PEI R	Programmable Exposure - NIR	PEIR=[Param.] <cr><lf> PEIR?<cr><lf></lf></cr></lf></cr>	2 to 2150400 clocks - 1 clock is 25ns	TR=1 で有効				
АН	One-push AWB shutter	AH=[Param.] <cr><lf></lf></cr>	0=Activate one-push AWB shutter	TR=1 で有効				
AH Inquire the status AHRS? <cr><lf> <one following="" of="" td="" values<=""></one></lf></cr>								

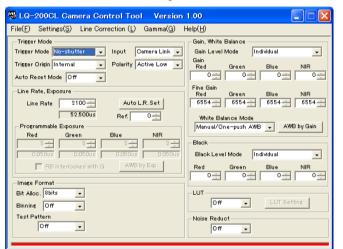
RS	after one-push		will be replied from the		
	AWB shutter		camera>		
	7 W 2 3 W 2 C C C	0=AWB has n			
			0=AWB has not been finished yet.		
			1=Succeeded.		
			2=Error1. Green image was		
			too bright.		
			3=Error2. Green image was		
			too dark.		
			4=Error3. Timeout-error		
			occurred.		
C -	· Trigger mode				
		TD [D] CD LE	0=No-Shutter		
TR	Trigger Mode	TR=[Param.] <cr><lf></lf></cr>	1=Shutter Select		
		TR? <cr><lf></lf></cr>	2=Pulse width control		
TC	Trimera Cuinin	TG=[Param.] <cr><lf></lf></cr>	0=Internal	TG=0 はTR=0 又は	
TG	Trigger Origin	TG? <cr><lf></lf></cr>	1=External	TR=1 時有効	
TI	Trigger Input	TI=[Param.] <cr><lf></lf></cr>	0=Camera-Link		
''	Trigger Input	TI? <cr><lf></lf></cr>	1=Hirose12pin		
TD	Trigger Delarity	TP=[Param.] <cr><lf></lf></cr>	0=Active-Low		
TP	Trigger Polarity	TP? <cr><lf></lf></cr>	1=Active-High		
AR	ARST=[Param_1 <cr><1 F> 0=0FF</cr>		0=OFF		
ST	I Auto recet mode I		1=ON		
D -	Image format				
ВІ	Binning	BI=[Param.] <cr><lf></lf></cr>	0=Binning Off, 1=Binning		
ы	Diffilling	BI? <cr><lf></lf></cr>	On		
ВА	Bit allocation	BA=[Param.] <cr><lf></lf></cr>	0=24bit, 1=30bit		
DA	Dit attocation	BA? <cr><lf></lf></cr>	·		
			0=Off		
		TS=[Param.] <cr><lf></lf></cr>	1=Color Bar		
TS	Test Pattern	TS? <cr><lf></lf></cr>	2=Gray Pattern 1	電源投入時は OFF	
		13. 3.	3=Gray Pattern 2		
			4=White		
<u>E</u> -		nce and signal settings			
	Gain Level -	C. ID 3.65 15	W . T		
GA	Master(Master	GA=[Param.] <cr><lf></lf></cr>	Master Tracking: -132 to 429		
	Tracking)	GA? <cr><lf></lf></cr>	Individual:-363 to 660		
C 1	Green(Individual)	CAD [Days = 1.CD LE	Master Traditions 224 to 224		
GA	Gain Level - Red	GAR=[Param.] <cr><lf></lf></cr>	Master Tracking: -231 to 231		
R		GAR (Daram 1 CD) (LE)	Individual:-363 to 660		
GA	Gain Level - Blue	GAB=[Param.] <cr><lf></lf></cr>	Master Tracking: -231 to 231		
В		GAB? <cr><lf></lf></cr>	Individual:-363 to 660		
GA	Gain Level - NIR	GAIR=[Param.] <cr><lf></lf></cr>	Master Tracking: -231 to 231		
IIR		GAIR? <cr><lf></lf></cr>	Individual:-363 to 660		

GM	Gain Mode	GM=[Param.] <cr><lf> GM?<cr><lf></lf></cr></lf></cr>	0=Master Tracking 1=Individual	工場出荷設定は	0
BL	Black Level - Master(Master Tracking) Green(Individual)	BL=[Param.] <cr><lf> BL?<cr><lf></lf></cr></lf></cr>	Master Tracking:0 to 255 Individual:0 to 255		
BL R	Black Level - Red	BLR=[Param.] <cr><lf> BLR?<cr><lf></lf></cr></lf></cr>	Master Tracking:-128 to 127 Individual:0 to 255		
BL B	Black Level - Blue	BLB=[Param.] <cr><lf> BLB?<cr><lf></lf></cr></lf></cr>	Master Tracking:-128 to 127 Individual:0 to 255		
BLI R	Black Level -NIR	BLIR=[Param.] <cr><lf> BLIR?<cr><lf></lf></cr></lf></cr>	Master Tracking:-128 to 127 Individual:0 to 255		
BL M	Gain Mode	BLM=[Param.] <cr><lf> BLM?<cr><lf></lf></cr></lf></cr>	0=Master Tracking 1=Individual	工場出荷設定は	0
WB	White Balance	WB=[Param.] <cr><lf> WB?<cr><lf></lf></cr></lf></cr>	0=Manual/One push AWB 1=4000K 2=4600K 3=5600K		
AW	Activate One- push AWB	AW=[Param.] <cr><lf></lf></cr>	0=Activate one-push AWB		
AW RS	Inquire the status after one-push AWB	AWRS? <cr><lf></lf></cr>	<下記の値が状況に応じて返信される> 0=AWB not completed yet. 1=Succeeded. 2=Error1. Green image was too bright. 3=Error2. Green image was too dark. 4=Error3. Timeout-error occurred.		
GA R2	Fine gain - red	GAR2=[Param.] <cr><lf> GAR2?<cr><lf></lf></cr></lf></cr>	6544 to 9830	8192=1 6554/8192(0.8) 6554/8192(1.2)	to
GA G2	Fine gain - Green	GAG2=[Param.] <cr><lf > GAG2?<cr><lf></lf></cr></lf </cr>	6544 to 9830	8192=1 6554/8192(0.8) 6554/8192(1.2)	to
GA B2	Fine gain - Blue	- Blue GAB2=[Param.] <cr><lf> GAB2?<cr><lf> 6544 to 9830</lf></cr></lf></cr>		8192=1 6554/8192(0.8) 6554/8192(1.2)	to
GA IR2	Fine gain - NIR	GAIR2=[Param.] <cr><lf > e gain - NIR > 6544 to 9830 GAIR2?<cr><lf></lf></cr></lf </cr>		8192=1 6554/8192(0.8) 6554/8192(1.2)	to
NR	Noise reduction	NR=[Param.] <cr><lf>NR?</lf></cr>	0 = OFF, 1= ON		

LU TC	LUT Control	LUTC=[Param.] <cr><lf> LUTC?<cr><lf></lf></cr></lf></cr>	0 = OFF, 1= 0.45, 2=User	
LU TR	LUT data - Red	LUTR=[Param.] <cr><lf> LUTR?<cr><lf></lf></cr></lf></cr>	データ数:512 パラメータ:0 to 8191	
LU	LUT data - Green	LUTG=[Param.] <cr><lf></lf></cr>		
TG	Lor data Green	LUTG? <cr><lf></lf></cr>	パラメータ:0 to 8191	
LU TB	LUT data - Blue	LUTB=[Param.] <cr><lf> LUTB?<cr><lf></lf></cr></lf></cr>	データ数:512 パラメータ:0 to 8191	
		LUTIR=[Param.] <cr><lf< td=""><td></td><td></td></lf<></cr>		
LU TIR	LUT data - NIR	>	データ数:512	
		LUTIR? <cr><lf></lf></cr>	パラメータ:0 to 8191	
F - 3	Shading correction	n, pixel gain and pixel b		
SD	Select shading	SDC=[Param.] <cr><lf></lf></cr>	0=Off (Bypass)	
С	correction mode	SDC? <cr><lf></lf></cr>	1=Factory area 2=User area	
			0=Run flat shading correction,	
SD	Run shading		store to user area	
R		SDR=[Param.] <cr><lf></lf></cr>	1=Run color shading correction,	ユーザーエリアに保存
	to user area		store to user area	
		SDS? <cr><lf></lf></cr>	0=Shading correction has	
	Inquire the status after shading correction		not been finished yet.	
SD			1=Succeeded.	
S			2=Error1-Image was too bright	
			3=Error2-Image was too dark	
			4=Error3-Timeout error	
			occurred.	
PG	Select pixel gain	PGC=[Param.] <cr><lf></lf></cr>	0=Off (Bypass)	
С	correction mode	PGC? <cr><lf></lf></cr>	1=Factory area	
	Run pixel gain		2=User area	
PG	Run pixel gain correction, store	PGR=[Param.] <cr><lf></lf></cr>	0=Run pixel gain correction,	 ユーザーエリアに保存
R	to user area	PGR? <cr><lf></lf></cr>	store to user area	
			0=Pixel gain correction has	
			not been finished yet.	
			1=Succeeded.	
PG	Inquire the status		2=Error1 - Image was too	
S	after pixel gain	PGS? <cr><lf></lf></cr>	bright	
	correction		3=Error2 - Image was too	
			dark	
			4=Error3 - Timeout error	
			occurred.	
РВ	Select pixel black	PBC=[Param.] <cr><lf></lf></cr>	0=Off (Bypass) 1=Factory area	
С	correction mode	PBC? <cr><lf></lf></cr>	2=User area	
			2-03c1 a1ca	

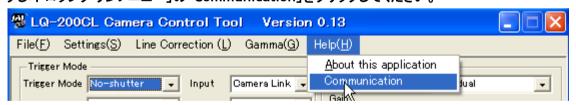
PB R	Run pixel black correction, store to user area	PRK= Param <(R>< F>	0=Run pixel black correction, store to user area	ユーザーエリアに保存			
PB S	Inquire the status after pixel black correction	PBS? <cr><lf></lf></cr>	0=Pixel black correction has not been finished yet. 1=Succeeded. 2=Error1 - Image was too bright. 3=Error2 - Image was too dark 4=Error3 - Timeout error occurred.				
G	G - Saving and loading data in EEPROM						
LD	Load Setttings (from Camera EEPROM)	LD=[Param.] <cr><lf></lf></cr>	0=Factory area 1=User area1 2=User area2	最後に使用したデータ			
SA	Save Settings (to Camera EEPROM)	SA=[Param.] <cr><lf></lf></cr>	1=User area1 2=User area2 Note the parameter 0 is not allowed.	エリアが次回電源 ON 時の初期設定となります			
EA	EEPROM Current Area No. Request.	EA? <cr><lf></lf></cr>	0=Factory area 1=User area1 2=User area2	最後に使用したデータ エリアを返します			

9. カメラコントロールツール


カメラコントロールツールは <u>www.jai.com</u> からダウンロードできます。 このコントロールツールは Windows XP/Vista/7 に対応しております。


9.1. ソフトウェアのインストール

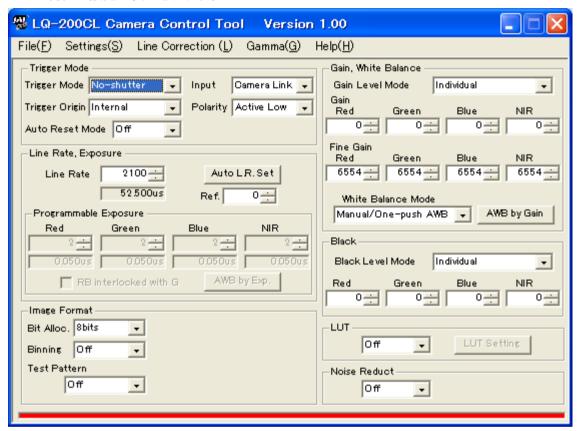
ダウンロードしたファイルから LQ-200CL_Ver.XXX.exe ファイルを実行します。セットアッププログラムが起動しますので画面の指示に従ってセットアップを行います。


9.2. ソフトウェアの立ち上げ

ソフトウェアをインストールした PC にカメラを通信ケーブルで接続しカメラ本体の電源を入れます。次いでWindows のスタートメニューから「すべてのプログラム」⇒「JAI A-S」と選択し「LQ-200CL Control tool」をクリックします。 「LQ-200CL Camera Control Tool」と「Communication」ウインドウが開きます。

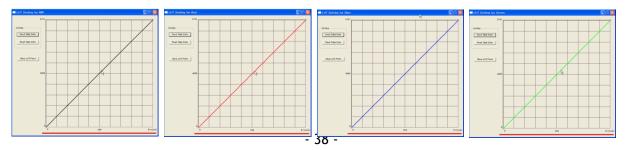
コミュニケーションウインドウが開かない場合は「Camera Control Tool」のメニューバーの「Help」をクリックし「ドロップダウンメニュー」の「Communication」をクリックしてください。

9.3. カメラの接続

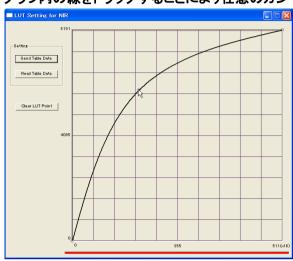

接続した PC にすでにカメラリンク フレームグラバーボードがインストールされている場合は Communication Port の Category に自動的に表示されますので内容を確認し「OK」をクリックします。 フレームグラバーボードを使用しない場合はカメラが接続している Com port を選択し「OK」をクリックします。 接続が確立すると 赤の Off-line 表示と ウインドウの下部にある赤いラインが緑に変わります。

9.4. カメラのコントロール画面

PC とカメラが接続終了すると現在のカメラの設定がコントロールツールにロードされカメラのコントロールツールに現在の設定が表示されます。



9.5. LUT の設定


LUT の「ドロップダウンメニュー」を開き「User」を選びます。

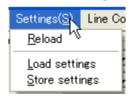
LUT setting ボタンをクリックすると以下の 4 つの設定画面(NIR, Red, Blue, Green)が開きます。

グラフ内の線をドラッグすることにより任意のガンマ補正カーブを設定することができます。

9.6. 各メニュー

9.6.1 File メニュー

Open: ハードディスク等に保存された設定パラメータ


をカメラに転送します。拡張子は.cam

Save as: ハードディスク等に設定パラメータを保存しま

す。拡張子は.cam

Exit: ソフトの終了

9.6.2 Settings メニュー

Reload: カメラ本体の RAM 領域から設定パラメータを

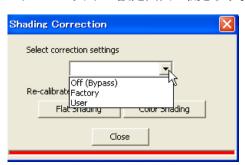
読み込みます。

Load settings: カメラ本体の EEPROM 領域から設定パ

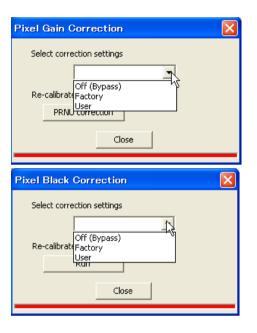
ラメータを読み込みます。

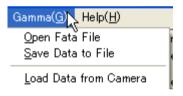
Factory, User 1,User2 から選択します。

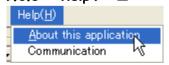
Store settings: カメラ本体の EEPROM 領域に設定パラ


メータを読み込みます。

User 1,User2 から選択します。


9.6.3 Line correction メニュー


このメニューを開くと シェーディング、ピクセルゲイン、 ピクセルブラックの設定画面が開きます。



9.6.4 Gamma メニュー

9.6.5 Help メニュー


Open Data file: ハードでディスク等に保存してある LUT データをコントロールソフトへ読み込み ます。拡張子は .csv

Save Data to File: コントロールソフト上で設定した LUT データをハードディスク等へ保存します。拡 張子は .csv

Load Data from Camera: 現在カメラに設定している LUT データをコントロールソフトに読み込み ます。

User 1, User 2 から選択します。

現在接続しているカメラのソルトのバージョン、モ デル名、ファームウェアのバージョン、カメラ ID を 表示します。

10. 外観図と寸法

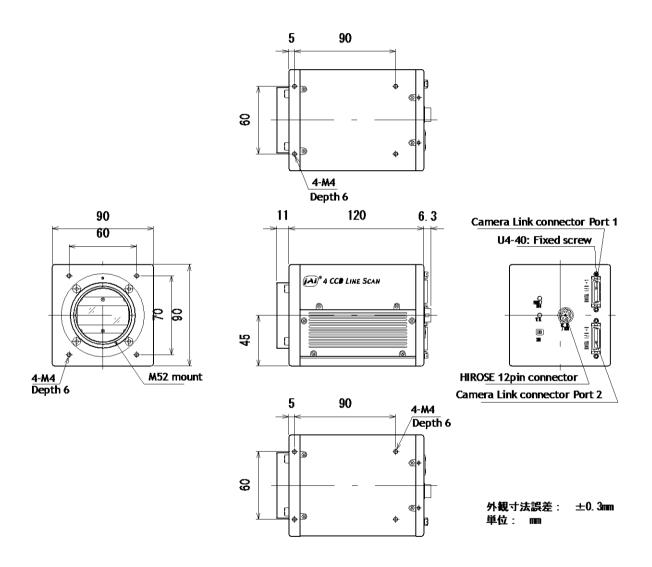


図 26. 外観図

11. 仕様

11.1. LQ-200CL 感度特性



図 27. LQ-200CL R,G,B & NIR 感度特性

11.2. 仕様

11.2. 仕様				
	有効画素数 : 2048 画素			
撮像素子	画素 Size : 14.0μm × 14.0μm			
	撮像有効ライン長 : 28.672mm			
ピクセルクロック	40MHz			
	総クロック数: 2100 clk			
標準ラインレート	ラインレート: 52.5 μs (No-Shutter/ 内部トリガ時)			
	ライン周波数: 19.048 KHz			
感度	27nJ/m (センサー感度)			
	RGB: 2800 lx (7800K 白色LED光源)			
標準被写体照度	(Line Rate=600 年、Gain=0dB,Shutter=OFF,Lens Iris=F2,100%出力時)			
	NIR: 20µW/cm ²			
映像 S/N 比	58 dB以上(Green: Gain=-3dB)			
同期方式	内部同期			
映像出力	Digital 8Bit×4又は10Bit×4 (Camera link)			
	モード選択:			
	マスター調整モード(マスターで全チャンネル調整、G以外を個別調整)			
	個別調整モード(全チャンネル個別調整)			
	マスター調整モード: Master(Green) :-3dB ~ +12dB			
ゲイン	R/B/NIR : -6dB ∼ +6dB			
	個別調整モード : B/G/R/NIR 共 : -9dB ~ +18dB			
	ファインゲイン(R/G/B/NIR): x0.8 ~ x1.2			
ナロノレバニヽ.っ	調整色温度範囲:4000K~9000K			
ホワイトバランス	標準照明色温度:7800K			
	モード選択:			
	マスター調整モード(マスターで全チャンネル調整、G以外を個別調整)			
黒レベル	個別調整モード(全チャンネル個別調整)			
(User setup)	マスター調整モード: Master(Green) : 0 ~ 16 LSB(8 ビット時)			
	R/B/NIR : -15 ~ 8 LB (8 ビット時)			
	個別調整モード : B/G/R/NIR 共 : 0 ~ 16 LSB (8 ビット時)			
	可能(No-shutter/内部トリガ及び Shutter-Select/内部トリガモード時)			
 ラインレート可変	可変範囲: 52.5µs(1L)~53.683ms(1024L)			
リインレード可変	注∶黒レベル安定範囲は 52.5μs(1L)~2ms			
	可変単位: 25ns(1clk)			
	可能(Shutter Selectモード時)			
電子シャッタ	可変範囲: 50ns(2clk) ~ 51.23 μ(※1)			
	可変単位: 25ns(1clk)			
Binning	可能			
テストパターン	有り			
7.11.12	0:カラーバー 1:グレイ1 2:グレイ2 3:白(890LSB)			
信号処理	① 画素感度補正・・・ピクセル補正(DSNU,PRNU)			
11.772	② シェーディング補正 ・・・ON/OFF 可			

_					
	R/G/B:フラットフィールド補正、カラー補正(Gch に合わせる)選択可				
	NIR :フラットフィールド補正、カラー補正(Gch に合わせる)選択可				
	③ カラーマトリックス ・・・R,G,B 3色補正				
	④ LUT/Gamma 補正:OFF,0.45,User 設定				
	⑤ ノイズリダクション ・・・ ON/OFF 可				
動作モード	· No-Shutter · Shutter Select · PWC				
	Hirose12Pin :4.0±2.0Vp-p TTL入力 又は				
トリガ入力(※2)	Camera link : LVDS (CC1)				
	正論理/負論理の切換可能。				
	最小トリガ幅: 外部トリガ 500ns 以上 / PWC 52.5 µs以上				
	Camera link				
同期系出力	-LVAL -DVAL -EEN				
(端子開放時)	Hirose 12Pin				
	·XEEN(負論理) 4.0 V p-p(無終端時)				
	EIA-644: Camera link CC1 又は				
7 - 1	RS-232C: Hirose12Pin				
通信インタフェース	通信レート: 9600bps				
	※通信インターフェースの切り替えはリアパネル SW1 によりおこないます。				
フィールド	可能				
アップデート					
	DC +12V~24V ±10%				
***	975mA (内部トリガ、ラインレート: 600μs, 0dB, 遮光時)				
電源電圧	1000mA (内部トリガ、ラインレート: 600μs, ゲイン最大、光量飽和時)				
消費電流	※ 12V 入力時、				
	※ 電源には 3A 以上供給できるものをご使用ください				
	M52 マウント(標準)				
レンズマウント	※使用可能レンズのマウント面からの突出寸法は、14mm 以内。				
	Nikon マウントも選択可能				
	Nikon F-Mount: 46.5mm 公差 0 ~ +0.1mm				
フランジバック	※レンズ側に絞りリングの無いレンズは使用不可。				
 光軸精度	中心 ± 0.1mm(Max)				
動作温度/湿度	- 5°C ~ +45°C / 20 ~80% (但し結露無き事)				
保存温度/湿度	-25°C ~ +60°C / 20 ~80% (但し結露無き事)				
	CE (EN61000-2+EN61000-3)				
各種規格	IEC61000-4-2 レベル 4 準拠 (※3)				
	FCC Part15 Class B				
外形寸法	90(W) x 90(H) x 120(D) mm (マウント部及び突起物含まず。)				
重量	1050 g				

- ※1. 最短ライン周期(52.5 μs)動作時の 最大蓄積時間
- ※2. ヒロセ12P入力とカメラリンク入力を同時に使用することはできません。
- ※3. この規格は弊社指定の接続コネクタ・ケーブル使用時に保証されます

変更履歴

変更年月	リビジョン	変更
June 2010	1.0	初版発行
June 2010	1.1	感度特性修正
Oct.2012	1.2	コマンドリスト PGR (1)機能搭載せず削除
Feb2013	1.3	センサー感度修正
July 2014	1.4	11.1 感度特性の図の乱れ修正
Dec. 2014	1.5	PBC, PGC, SDC のデフォルト設定修正

Supplement

The following statement is related to the regulation on "Measures for the Administration of the control of Pollution by Electronic Information Products", known as "China RoHS". The table shows contained Hazardous Substances in this camera.

mark shows that the environment-friendly use period of contained Hazardous Substances is 15 years.

重要注意事项

有毒,有害物质或元素名称及含量表

根据中华人民共和国信息产业部『电子信息产品污染控制管理办法』,本产品《 有毒,有 害物质或元素名称及含量表 》如下.

	有毒有害物质或元素					
部件名称	铅 (Pb)	汞 (Hg)	镉 (Cd)	六价铬 (Cr(VI))	多溴联苯 (PPB)	多溴二苯醚 (PBDE)
棱镜	×	0	0	0	0	0
光学滤色镜	×	0	×	0	0	0
镜头座	×	0	0	0	0	0
连 接插 头	×	0	0	0	0	0
电路板	×	0	0	0	0	0
			••••		• • • •	

- ○:表示该有毒有害物质在该部件所有均质材料中的含量均在SJ/T11363-2006规定的限量要求以下。
- ×: 表示该有毒有害物质至少在该部件的某一均质材料中的含量超出SJ/T11363-2006规定的限量要求。
- (企业可在此处、根据实际情况对上表中打"×"的技术原因进行进一步说明。)

环保使用期限

电子信息产品中含有的有毒有害物质或元素在正常使用的条件下不会发生外 泄或突变、电子信息产品用户使用该电子信息产品不会对环境造成严重污染 或对基人身、财产造成严重损害的期限。

数字「15」为期限15年。

株式会社 ジェイエイアイコーポレーション

〒221-0052 神奈川県横浜市神奈川区栄町10-35 ポートサイドダイヤビル Phone 045-440-0154 Fax 045-440-0166 www.jai.com

Visit our web site on www.jai.co m

