
TNE-0022A-01

Technical Note
JAI SDK to eBUS SDK Migration Guide

JAI SDK to eBUS SDK Migration Guide

Overview

This guide is designed to help current users of the JAI SDK migrate their applications to the new eBUS SDK by

Pleora. Since there’s no one-to-one correspondence between the functions in the two SDKs, this guide aims

to shows how similar camera operations as a whole can be performed in each SDK and points out any

significant differences.

The guide assumes that the reader is familiar with the JAI SDK and how to use it with GenICam cameras.

Code examples will be shown using the C/C++ API in both SDKs since this is most commonly used API.

1. SDK Differences in a Nutshell

 JAI SDK eBUS SDK

Platforms Windows, Linux (x86) Windows

Cost Free
Free but unlicensed cameras have
watermarked images

Licensing No license required License required for non-JAI cameras

API languages C, .NET languages C++, .NET languages

Windows development
requirements

Visual Studio 2005 through
2012

Visual Studio 2008, 2010, 2012, 2013,
and 2015

Camera interfaces supported
GigE, USB3, GenTL (CXP,
CameraLink)

GigE, USB3

Pixel Formats supported
All formats used by JAI
cameras, most PFNC formats

All formats used by JAI cameras, most
PFNC formats

Object Oriented Programming Classes only in .NET API All APIs are class-based

Figure 1 - SDK basic features comparison

2. Current JAI SDK functionality not in the eBUS SDK

• Automatic ForceIP

• HDR on host

• Image flip and rotate

• Color histograms

• Lookup Tables on host

• Special image processing functions like color correction and lens distortion correction

TNE-0022A-01
Technical Note
JAI SDK to eBUS SDK Migration Guide

2

3. Comparison of basic operation between the SDKs

3.1 Enumerating and opening cameras

In the JAI SDK the factory object has complete knowledge of the system and is how cameras can be

discovered and accessed. In the eBUS SDK the PvSystem object plays a similar role.

Note that in the JAI SDK objects can only be accessed through handles while in eBUS they are user-

accessible classes.

JAI SDK:
J_STATUS_TYPE rc;

FACTORY_HANDLE hFactory;

CAM_HANDLE hCamera;

bool8_t bHasChanged;

uint32_t iNumCameras;

int8_t sCameraId[J_CAMERA_ID_SIZE];

uint32_t size;

// Open the Factory

rc = J_Factory_Open((int8_t*)"" , &hFactory);

// Search for cameras on all interfaces

rc = J_Factory_UpdateCameraList(hFactory, &bHasChanged);

// Get the number of cameras

rc = J_Factory_GetNumOfCameras(hFactory, &iNumCameras);

// Get camera ID of first camera

size = sizeof(sCameraId);

rc = J_Factory_GetCameraIDByIndex(hFactory, 0, sCameraId, &size);

// And open the camera and get a handle to it

rc = J_Camera_Open(hFactory, sCameraId, &hCamera);

eBUS SDK:
PvResult lResult;

PvSystem lSystem;

uint32_t iNumCameras;

PvDevice* plDevice;

// Search for cameras on all interfaces

lResult = lSystem.Find();

// Get the number of cameras

iNumCameras = lSystem.GetDeviceCount();

// Get pointer to DeviceInfo of first camera

const PvDeviceInfo* plDeviceInfo = lSystem.GetDeviceInfo(0);

// Create and connect to camera as a PvDevice

TNE-0022A-01
Technical Note
JAI SDK to eBUS SDK Migration Guide

3

// Note: To access GigE or USB3-specific camera attributes the pointer to

PvDevice will

// need to be explicitly cast to the subclass PvDeviceGEV or PvDeviceU3V

plDevice = PvDevice::CreateAndConnect(plDeviceInfo, &lResult);

3.2 Accessing camera features

Accessing camera features is relatively trivial with the JAI SDK while eBUS requires a bit more setup to

access a feature.

JAI SDK:
// Set exposure time to 5000us, note that ExposureTime is a float feature

rc = J_Camera_SetValueDouble(hCamera, "ExposureTime", 5000.0);

eBUS SDK:
// Access the exposure time node as a pointer to a GenICam float feature and

set it to 5000 us

PvGenParameterArray* plDeviceGenParams = plDevice->GetParameters();

PvGenFloat* plExposureTime = dynamic_cast<PvGenFloat *>(plDeviceGenParams-

>Get("ExposureTime"));

lResult = plExposureTime->SetValue(5000.0);

// Note that this could also be done in a single line like so:

//lResult = dynamic_cast<PvGenFloat *>(plDevice->GetParameters()-

>Get("ExposureTime"))->SetValue(5000.0);

3.3 Setting up streaming and acquiring images

In the JAI SDK the DataStream object is responsible for setting up the flow of images from the camera

to the host and notifying the user that a new image buffer has arrived. The mechanics of waiting on a

new buffer, retrieving it, and ultimately re-queuing it are left up to the user as well as

allocating/freeing buffers. An acquisition callback function will handle all of these tasks automatically

but in an acquisition thread they must be done explicitly by the user.

In eBUS SDK there is a PvStream class which functions similarly to the JAI data stream object. However,

there is an additional class, PvPipeline, which manages acquired buffers and automates some of the

buffer-related tasks that the JAI data stream object does not handle. A PvPipeline object associated

with a PvStream is basically a loop that continually checks for new buffers. If a new buffer arrives and

the user has requested one through a function like RetrieveNextBuffer, it is passed to the user.

Otherwise the buffer is immediately re-queued to the stream. This keeps the image output queue from

backing up and the driver from running out of free buffers. The PvPipeline class also handles

automatically re-sizing buffers if the size of streamed images changes.

3.3.1 Using callback functions

One of the biggest differences in the two SDKs is how acquisition using callback functions is

handled. The JAI SDK has a single function for registering a callback function that will be called

TNE-0022A-01
Technical Note
JAI SDK to eBUS SDK Migration Guide

4

whenever a new buffer is ready. Acquisition by callback function is easy but generally not the

most efficient way of handling and processing buffers since a copy of each buffer must be made

before the function returns. In the eBUS SDK setting up and using a callback function is more

involved which is probably a subtle way of discouraging its use.

To get the equivalent functionality as the JAI SDK it’s necessary to sub-class the virtual class

PvPipelineEventSink and implement the function OnBufferReady which will be called whenever a

new buffer has been retrieved from the stream by the pipeline.

[Note that since OnBufferReady is in a separate class and only receives a pointer to the pipeline,

it will not have direct access to any display windows and cannot display images. See the sample

StreamCallbackSample to see how can be handled via a custom constructor.]

JAI SDK:
uint32_t iImageSize; // size of image in bytes

THRD_HANDLE hThread;

// Register the acquisition callback function and then open stream

void *vfptr = reinterpret_cast<void*>(AcquisitionCBFunc);

J_IMG_CALLBACK_FUNCTION *cbfptr =

reinterpret_cast<J_IMG_CALLBACK_FUNCTION*>(&vfptr);

rc = J_Image_OpenStream(hCamera, 0, NULL, *cbfptr, &hThread, iImageSize);

// Acquisition call back function

static void __stdcall AcquisitionCBFunc(J_tIMAGE_INFO *pAqImageInfo)

{

 // Image data is available in pAqImageInfo->pImageBuffer

 // Do processing of image here and return when done

}

eBUS SDK:
// Derived class to handle pipeline events

class MyPipelineEventSink : public PvPipelineEventSink

{

public:

 MyPipelineEventSink(void);

 // New buffers will be received and displayed in this function

 void OnBufferReady(PvPipeline *poPipeline);

};

…

// Callback function that's called when a new buffer has been

delivered to the pipeline

void MyPipelineEventSink::OnBufferReady(PvPipeline *poPipeline)

{

 PvBuffer* poBuffer = NULL;

TNE-0022A-01
Technical Note
JAI SDK to eBUS SDK Migration Guide

5

 PvResult oResult, oOperationResult;

 // Get next available buffer, timeout after 1000ms

 oResult = poPipeline->RetrieveNextBuffer(&poBuffer, 1000,

&oOperationResult);

 if (oResult.IsOK() && oOperationResult.IsOK())

 {

 // Do something with buffer here

 //

 }

 else

 {

 // Handle error(s)

 }

}

3.3.2 Using threads

Since thread functions are very OS-specific, we have chosen to show threads as implemented in

Windows.

To use an acquisition thread in the JAI SDK it’s necessary to create a DataStream object attached

to the camera and a DataStream event that is registered to the EVENT_NEW_BUFFER event. This

can be done outside of the thread or within the thread as long as these variable are accessible in

the thread.

Then loop on the function call J_Event_WaitForCondition and wait for the condition to be met.

Then the buffer information can be read out field by field into a J_tIMAGE_INFO structure. This

image buffer can be processed within the thread or passed as a pointer to some other processing.

When you are finished with the buffer, it’s necessary to re-queue it using

J_DataStream_QueueBuffer to make it available for the driver to use again.

[Because of the number of steps involved rather than describe each step, I will refer the user to

the JAI sample programs StreamThreadSample or ConsoleExampleFullAcq.]

By contrast using acquisition threads with eBUS is much simpler because much of the setup and

work is already handled by the PvPipeline object. Most of the thread consists of just looping and

blocking on PvPipeline::ReceiveNextBuffer until a new buffer arrives.

JAI SDK:
int main(int argc, _TCHAR* argv[])

{

 ...

 // Create the thread

 hAcqStreamThread = CreateThread(NULL, NULL,

(LPTHREAD_START_ROUTINE)AcquisitionThread, &index, NULL, NULL);

TNE-0022A-01
Technical Note
JAI SDK to eBUS SDK Migration Guide

6

 // Start acquisition on the camera, thread should be ready to

receive buffers

 rc = J_Camera_ExecuteCommand(hCamera,

(int8_t*)"AcquisitionStart");

 ...

}

// Acquisition thread function

void AcquisitionThread(LPVOID lpdwThreadParam)

{

 J_STATUS_TYPE rc;

 STREAM_HANDLE hDataStream = (STREAM_HANDLE) lpdwThreadParam;

 uint32_t iSize;

 BUF_HANDLE iBufferID;

 HANDLE hCondition;

 EVT_HANDLE hStreamEvent;

 J_COND_WAIT_RESULT WaitResult;

 EVENT_NEW_BUFFER_DATA eventData; // Struct for EventGetData

 J_tIMAGE_INFO tAqImageInfo = {0, 0, 0, 0, NULL, 0, 0, 0, 0, 0, 0};

 // Create the condition used for signalling the new image event

 rc = J_Event_CreateCondition(&hCondition);

 // Create a stream event for new frame notification

 gtCamInfo[iCamNum].hStreamEvent = CreateEvent(NULL, true, false,

NULL);

 // Register the event and associated condition with the

acquisition engine

 rc = J_DataStream_RegisterEvent(hDataStream, EVENT_NEW_BUFFER,

hCondition, &hStreamEvent);

 // Start image acquisition

 rc = J_DataStream_StartAcquisition(hDataStream,

ACQ_START_NEXT_IMAGE, ULLONG_MAX);

 // Acquisition loop

 while (gbAcqThreadEnabled) {

 // Wait for Buffer event (or kill event) or timeout after

1000ms

 rc = J_Event_WaitForCondition(hCondition, 1000, &WaitResult);

 // Did we get a new buffer event?

 if (J_COND_WAIT_SIGNAL == WaitResult) {

 uint64_t iFramesPending = 0;

 uint64_t iRawPixelFormat;

 uint64_t iReadValue;

TNE-0022A-01
Technical Note
JAI SDK to eBUS SDK Migration Guide

7

 // Get the Buffer Handle from the event

 iSize = (uint32_t)sizeof(EVENT_NEW_BUFFER_DATA);

 rc = J_Event_GetData(hStreamEvent, &eventData,

&iSize);

 iBufferID = eventData.BufferHandle;

 // Fill in complete tAqImageInfo structure field by

field

 // Get frame width

 iSize = sizeof (size_t);

 rc =

J_DataStream_GetBufferInfo(gtCamInfo[iCamNum].hDataStream, iBufferID,

BUFFER_INFO_WIDTH, &iReadValue, &iSize); CHECK_RC(rc,

"J_DataStream_GetBufferInfo failed");

 tAqImageInfo.iSizeX = (uint32_t) iReadValue;

 // Get frame height

 iSize = sizeof (size_t);

 rc =

J_DataStream_GetBufferInfo(gtCamInfo[iCamNum].hDataStream, iBufferID,

BUFFER_INFO_HEIGHT, &iReadValue, &iSize); CHECK_RC(rc,

"J_DataStream_GetBufferInfo failed");

 tAqImageInfo.iSizeY = (uint32_t) iReadValue;

 // Do any processing with image buffer here

 //

 // Then queue this buffer again for reuse in

acquisition engine

 // or pass the buffer pointer/index on to some

other thread that will requeue it when done

 rc = J_DataStream_QueueBuffer(hDataStream,

iBufferID);

 }

 }

 // Stop streaming

 rc = J_DataStream_StopAcquisition(hDataStream,

ACQ_STOP_FLAG_KILL);

 // Unregister new buffer event

 rc = J_DataStream_UnRegisterEvent(hDataStream, EVENT_NEW_BUFFER);

 // Free the event object

 J_Event_Close(hStreamEvent);

TNE-0022A-01
Technical Note
JAI SDK to eBUS SDK Migration Guide

8

 // Free the Condition

 J_Event_CloseCondition(hCondition);

 // End of thread function

}

eBUS SDK:
// Create and open camera stream

PvStream *lStream = PvStream::CreateAndOpen(plDeviceInfo, &lResult);

// Cast to specific stream interface type

PvStreamGEV *lStreamGEV = static_cast<PvStreamGEV *>(lStream);

// Configure device streaming destination (only needed for GigE cameras)

lResult = lDeviceGEV->SetStreamDestination(lStreamGEV-

>GetLocalIPAddress(), lStreamGEV->GetLocalPort());

// Create pipeline object

PvPipeline* lPipeline = new PvPipeline(lStream);

if (lPipeline != NULL)

{

 // And set the Buffer size and the Buffer count

 lPipeline->SetBufferSize(lDeviceGEV->GetPayloadSize());

 lResult = lPipeline->SetBufferCount(BUFFER_COUNT);

}

// Start acquisition thread here and pass in pointers to PvDeviceGEV,

PvStream, and PvPipeline via lpParameter

hAcqStreamThread = CreateThread(NULL, NULL,

(LPTHREAD_START_ROUTINE)AcquisitionThread, lpParameters, NULL, NULL);

…

// Thread function which continually acquires frames from a camera

void AcquisitionThread(LPVOID lpParameters)

{

 PvResult lResult;

 PvDeviceGEV *lDevice = (PvDeviceGEV*)lGEVDevice;

 // Obtain pointers PvDeviceGEV *lGEVDevice, PvPipeline* lPipeline,

PvStream* lStream from lpParameters somehow

 // Get device parameters and map the AcquisitionStart and

AcquisitionStop commands

 PvGenParameterArray *lDeviceParams = lDevice->GetParameters();

 PvGenCommand *lAcqStart = dynamic_cast<PvGenCommand

*>(lDeviceParams->Get("AcquisitionStart"));

 PvGenCommand *lAcqStop = dynamic_cast<PvGenCommand *>(lDeviceParams-

>Get("AcquisitionStop"));

TNE-0022A-01
Technical Note
JAI SDK to eBUS SDK Migration Guide

9

 // Start pipeline

 lResult = lPipeline->Start();

 // Enable streaming

 lResult = lDevice->StreamEnable();

 // Send Start command

 lResult = lAcqStart->Execute();

 // Loop and block until the next buffer is available, timeout after

1000ms

 PvBuffer *lBuffer = NULL;

 PvResult lOperationResult;

 while (bLoopCondition == true)

 {

 lResult = lPipeline->RetrieveNextBuffer(&lBuffer, 1000,

&lOperationResult);

 if (lResult.IsOK() && lOperationResult.IsOK())

 {

 // Do something with buffer

 //

 // Release the buffer back to the pipeline

 lResult = lPipeline->ReleaseBuffer(lBuffer);

 }

 }

 // Now send Stop command

 lResult = lAcqStop->Execute();

 // Disable streaming on the device

 lResult = lDevice->StreamDisable();

 // Stop the pipeline

 lResult = lPipeline->Stop();

}

3.4 Freeing resources and closing cameras

In the JAI SDK cleanup consists of closing any handles and calling the appropriate close function for JAI

objects in reverse order of their creation. If buffers were manually allocated, these will also need to

be removed from driver use and then freed.

In eBUS cleanup is relatively straightforward. Any created objects should be stopped or closed in

reverse order of their creation and their destructors will handle the freeing of any allocated resources.

TNE-0022A-01
Technical Note
JAI SDK to eBUS SDK Migration Guide

10

JAI SDK:
// Stop acquisition and wait for any in-flight buffers to arrive

rc = J_Camera_ExecuteCommand(hCamera, "AcquisitionStop");

Sleep(300); // 300ms should be more than enough

// Handle buffer cleanup

// Flush image queues in case there are images pending then unprepare

and delete buffers

J_DataStream_FlushQueue(hDataStream, ACQ_QUEUE_INPUT_TO_OUTPUT);

J_DataStream_FlushQueue(hDataStream, ACQ_QUEUE_OUTPUT_DISCARD);

for(i = 0 ; i < NUM_OF_BUFFERS; i++) {

 // Remove each buffer from the acquisition engine

 void *pBufferPtr, *pPrivateInfo;

 J_DataStream_RevokeBuffer(hDataStream, pAcqBufferID[i],

&pBufferPtr , &pPrivateInfo);

 if (pAcqBuffer[i]) {

 delete pAcqBuffer[i];

 }

 pAcqBuffer[i] = NULL;

 pAcqBufferID[i] = 0;

}

// Close image stream thread handle

CloseHandle(hAcqStreamThread);

// Close data stream

rc = J_DataStream_Close(hDataStream);

// Close view window

rc = J_Image_CloseViewWindow(hView);

// Close the camera

rc = J_Camera_Close(hCamera);

// Close the factory

rc = J_Factory_Close(hFactory);

eBUS SDK:
// Send AcquisitionStop command

lResult = lAcqStop->Execute();

// Disable streaming on the device

lResult = lDevice->StreamDisable();

// Stop the pipeline

lResult = lPipeline->Stop();

// Clean up display window if created

TNE-0022A-01
Technical Note
JAI SDK to eBUS SDK Migration Guide

11

if (poDisplay) {

 poDisplay->Close();

 delete poDisplay;

 poDisplay = NULL;

}

// Close and free stream

lResult = lStreamList[i]->Close();

PvStream::Free(lStreamList[i]);

lStreamList[i] = NULL;

// Disconnect device

PvDevice *lDevice = (PvDevice*)lGEVDeviceList[i];

PvDevice::Free(lDevice);

lGEVDeviceList[i] = NULL;

3.5 .NET API differences

Since the PvDotNet classes are just wrapper classes around the C++ classes, there are almost no

appreciable differences between the two APIs. It should be relatively easy to translate C++ classes and

methods to their .NET equivalents.

4. FAQ – Additional Questions

4.1 I have JAI CXP cameras – can I use the eBUS SDK with them?

No. eBUS does not support GenTL so it cannot be used to control cameras that use third-party vendors’

framegrabbers for acquisition.

4.2 Can eBUS co-exist with Cognex VisionPro?

Unfortunately, it cannot. VisionPro uses a licensed version of Pleora’s Universal Pro GigE driver that is

not compatible with the version included with eBUS and this prevents both packages from being

installed on the same system.

Author: Gordon Rice (gr@jai.com)

End.

mailto:gr@jai.com

TNE-0022A-01
Technical Note
JAI SDK to eBUS SDK Migration Guide

12

Revision History

Revision Date Changes

1 2019/04/02 New release

