PLEORA TECHNOLOGIES INC.

eBUS SDK Python API
eBUS SDK Version 6.3

Quick Start Guide

’
Pleora

Technologies

Copyright © 2023 Pleora Technologies Inc.

These products are not intended for use in life support appliances, devices, or systems where malfunction
of these products can reasonably be expected to result in personal injury. Pleora Technologies Inc. (Pleora)
customers using or selling these products for use in such applications do so at their own risk and agree to

indemnify Pleora for any damages resulting from such improper use or sale.
y g g prop

Trademarks

CoreGEV, PureGEYV, eBUS, iPORT, vDisplay, AutoGEV, AutoGen, Al Gateway, eBUS Studio, and all
product logos are trademarks of Pleora Technologies. Third party copyrights and trademarks are the

property of their respective owners.

Notice of Rights

All information provided in this manual is believed to be accurate and reliable. No responsibility is
assumed by Pleora for its use. Pleora reserves the right to make changes to this information without
notice. Redistribution of this manual in whole or in part, by any means, is prohibited without obtaining

prior permission from Pleora.

Document Number
EX001-017-0025 Version 1.0 03/24/23

Table of Contents

Aboutthis GUIdE e 1
What this Guide Provides 2
Related DOCUMENTS . . . oo v vttt e e e e e e e e 2

Introducing the eBUS SDK Python APL.o 3
About the eBUS SDK Python APL. oo e e 4
€BUS SDK LICENSES . .« v vttt ettt et e e e e e e e e e e 5

Installing the eBUS SDK i e s ettt 7
System ReqUIrements. v ottt e 8
Installing the eBUS Python package on Windows 10
Installation of eBUS-Python dependency packages. 11

Usingthe Sample Code.ot e e e 15
Overview: System COMPONENTS « . . .« vttt ettt et et et 16
Description of Samplest 17

Code Walkthrough: Acquiring Images withthe eBUSSDK. 19
Accessing the Python Sample Code i 20
Classes Used in the PvStreamSample i 21
Module Imports.o et e 21
PvStreamSampleo 22
The connect_to_device FUNCtion.ttt e 23
The open_stream Functionottt e 24
The configure_stream Function. i 25
The configure_stream_buffers Function. o 26
The acquire_images Function 27

TroubIESNOOtING.ot e 33
Troubleshooting Tips. . . .« \o ittt e 33

Technical SUPPOM . . oot e e s e e e e 37

eBUS SDK Python API Quick Start Guide

Chapter 1

About this Guide

This chapter describes the purpose and scope of this guide, and provides a list of complementary guides.
The following topics are covered in this chapter:

e “What this Guide Provides” on page 2

¢ “Related Documents” on page 2

About this Guide 1

What this Guide Provides

This guide provides you with the information you need to install the eBUS SDK (which lets you use the
eBUS SDK Python API) and an overview of the system requirements.

You can use the Python sample applications to see how the Python API classes and methods work
together for device configuration and control, unicast and multicast communication, image and data
acquisition, image display, and diagnostics. You can also use the Python sample code to verify that your
system is working properly (that is, determine whether there is a problem with your code or your

equipment).

You can also consult the eBUS SDK Python API Help files for further information regarding the Python
API itself. These help files are HTML based. On Windows, they can be found under the Python install

directory:
PYTHON_INSTALLATION_PATH\Lib\site-packages\ebus-python\docs\index.html

On Linux, these files are co-located with the standard eBUS SDK files:
/opt/pleora/ebus_sdk/<distribution targeted>/share/doc/python/index.html

For troubleshooting information and technical support contact information for Pleora Technologies, see

the last few chapters of this guide.

Related Documents

The eBUS SDK Python API Quick Start Guide is complemented by the following Pleora Technologies
documents, which are available on the Pleora Technologies Support Center (supportcenter.pleora.com):

o eBUS Player Quick Start Guide

o eBUS Player User Guide

 eBUS SDK Python API Help File

» eBUS SDK for Linux Quick Start Guide

o Getting Started with eBUS Edge

 eBUS SDK Licensing Overview Knowledge Base Article

o Configuring Your Computer and Network Adapters for Best Performance Knowledge Base Article

2 eBUS SDK Python API Quick Start Guide

https://supportcenter.pleora.com

Chapter 2

Introducing the eBUS SDK Python API

This chapter describes the eBUS SDK Python API, which is a feature of the eBUS SDK that allows you

to develop custom vision systems to acquire and transmit images and data using Python.
The following topics are covered in this chapter:

» “About the eBUS SDK Python API” on page 4
+ “eBUS SDK Licenses” on page 5

eBUS SDK Python API Quick Start Guide 3

About the eBUS SDK Python API

eBUS SDK is built on a single API to receive video over GigE, 10 GigE, and USB 3.0 that is portable
across Windows, and macOS operating systems. With an eBUS SDK Seat License, designers can develop
production-ready software applications in the same environment as their end-users, and quickly and easily
modify applications for different media, while avoiding supporting multiple APIs from various vendors.
Compared to camera vendor provided SDKs, eBUS frees developers from being tied to a specific camera,

and instead they can choose the device that is best for the application.

eBUS Edge for Sensor Devices

eBUS Edge is a software implementation of a full device level GigE Vision transmitter, without requiring
any additional hardware. Adding eBUS Edge to a CPU's software stack turns it into a fully compliant
GigE Vision device that supports image transmission and enables the device to respond to control
requests from a host controller. eBUS Edge is GigE Vision and GenlCam compliant, meaning end-users
can use any standards compliant third-party image processing system. eBUS Edge currently supports the
GigE Vision standard.

eBUS Receive for Host Applications

eBUS Receive manages high-speed reception of images or data into buffers for hand-off to the end application for
further analysis. Developers can write applications that run on a hostcomputer to seamlessly control and configure

an unlimited number of GigE Vision or USB3 Vision and GenICam compliant sensors.

The eBUS Universal Pro driver reduces CPU usage when receiving images or data, leaving more processing power for
analysis and inspection applications while helping meet latency and throughput requirements for real-time
applications. The eBUS Universal Pro driveriseasily integrated into third-party processing software to bring

performance advantages to end-user applications.

4 eBUS SDK Python API Quick Start Guide

eBUS SDK Licenses

Some components of the eBUS SDK require a Pleora license to remove transmit and receive limitations.

eBUS Receiver License

When a license is not present and you are receiving images from third-party GigE Vision or USB3 Vision
transmitter technology, an embossed Pleora watermark will appear on the images that you receive. In
addition, you will not be able to receive the GigE Vision or USB3 Vision raw data payload type from the

transmitting device.

GigE Vision Devices Created with the eBUS Edge API

When an eBUS Edge license is not present on the eBUS Edge application side, the eBUS receiver
application will automatically disconnect from the eBUS Edge device after 15 minutes. In addition, the
eBUS Edge device will report hard-coded device information (such as the device model name), instead of

your organization’s customized information.

BUS Edge

Non-Pleora Transmitter

Technology
eBUS EdgeLicense l "

PleoraTransmitier - Removes the 15-minute timeout -
“Yechn ology - Lets software developers customize

device informationstrings

License NotRequired €BUS Receivelicense

» - Removes thewatermark
- Lets you receive GenlCam
FYPRIEE raw data payload type

Receiving Application
gBUS Player, Plegra sample applications,
applications developed with the eBUS SDK

Activating an eBUS SDK License

For detailed information about licensing, including details on activating a license, see the eBUS SDK

Licensing Overview Knowledge Base Article available on the Pleora Technologies Support Center at
supportcenter.pleora.com.

Introducing the eBUS SDK Python API 5

https://supportcenter.pleora.com

eBUS SDK Python API Quick Start Guide

Chapter 3

Installing the eBUS SDK

eBUS SDK Python is packaged differently for Windows compared with Linux based systems. On Linux
systems, eBUS SDK Python is incorporated into the traditional eBUS SDK install package and is
therefore installed at the same time. On Windows, eBUS SDK Python is a stand alone package that needs
to be installed separately after eBUS SDK has been installed.

. The instructions in this chapter are based on the Windows 10 or Windows 11 operating system. The steps
may vary depending on your computer’s operating system.

The following topics are covered in this chapter:

o “System Requirements” on page 8
* “Python Releases for Windows” on page 9
¢ “Installing the eBUS Python package on Windows” on page 10

Installing the eBUS SDK 7

System Requirements

Ensure the computer on which you install the eBUS SDK with Python meets the following

recommended requirements:

* At least one Gigabit Ethernet NIC (if you are using GigE Vision devices).
* An appropriate compiler or integrated development environment (IDE):

e Visual Studio Code.

One of the following operating systems:

* Microsoft Windows 11 64-bit
* Microsoft Windows 10, 64-bit
« For the x86 Linux platform:
e Ubuntu 22.04 LTS 64-bit
» Ubuntu 20.04 LTS 64-bit
» Ubuntu 18.04 LTS 64-bit
* Red Hat Enterprise Linux 8, 64-bit
* CentOS Stream 8, 64-bit

« For the Linux for ARM platform:
* NVIDIA Jetson TX2, Jetson Nano, Jetson Xavier NX, Jetson AGX Xavier, Jetson TX2 NX
running JetPack 4.6 (Ubuntu 18.04)

e NVIDIA Jetson AGX Xavier, Jetson Xavier NX, Jetson AGX Orin, Jetson Orin NX
running JetPack 5.1 (Ubuntu 20.04)

* For the x86 Linux and Linux ARM platforms, Qt is required to compile C++ GUI-based
samples:

 For Ubuntu 22.04 Desktop: 64-bit Qt 5.15.3
* For Ubuntu 20.04 Desktop: 64-bit Qt 5.12.8
» For Ubuntu 20.04 for ARM: Qt 5.12.8

+ For Ubuntu 18.04 Desktop: 64-bit Qt 5.9.5
* For Ubuntu 18.04 for ARM: Qt 5.9.5

« For RHEL 8.7, 64-bit: Qt 5.15.3

* CentOS Stream 8, 64-bit: Qt 5.15.3

For supported USB 3.0 host controller chipsets, consult the eBUS SDK Release Notes, available on the
u Pleora Support Center.

* For Linux x86/ARM platforms, we provide eBUS Python for the stock Python version of the
OS:
 For Ubuntu 22.04 Desktop (64-bit), eBUS Python for Python 3.10 is installed with the
SDK

¢+ For Ubuntu 20.04 Desktop (64-bit), eBUS Python for Python 3.8 is installed with the
SDK

8 eBUS SDK Python API Quick Start Guide

+ For Ubuntu 20.04 for ARM (64-bit), eBUS Python for Python 3.8 is installed with the
SDK

 For Ubuntu 18.04 Desktop (64-bit), eBUS Python for Python 3.6 is installed with the
SDK

¢+ For Ubuntu 18.04 for ARM (64-bit), eBUS Python for Python 3.6 is installed with the
SDK

» For RHEL 8 (64-bit), eBUS Python for Python 3.6 is installed with the SDK
» For CentOS 8 Stream (64-bit), eBUS Python for Python 3.6 is installed with the SDK

For non-default Python versions for different Linux ARM/x86 platforms, consult your Pleora support

0 representative.

Depending on the incoming and outgoing bandwidth requirements, as well as the performance of each NIC,

U you may require multiple NICs. For example, even though Gigabit Ethernet is full duplex (that is, it manage
1 Gbps incoming and 1 Gbps outgoing), the computer’s PCle bus may not have enough bandwidth to
support this. This means that while your NIC can — in theory — accept four cameras at 200 Mbps each
incoming, and output a 750 Mbps stream on a single NIC, the NIC you choose may not support this level
of performance.

Python Releases for Windows
For more information see https://www.python.org/downloads/windows/

Only the latest of each minor version is officially supported. The following Windows versions are

supported:

¢ Windows 8.1, 10, and 11: Python 3.6, 3.7, 3.8, 3.9, and 3.10.
¢ Windows 7: Python 3.6, 3.7, and 3.8.

Python version 3.11 is not currently supported.

The following table indicates the Python releases for Windows applications:

Table 1: Supported Python releases for Windows Versions

Windows installer (64-bit) Windows 8.1 and later Windows 7

Python 3.10.9 Available Not Available
Python 3.11.0 Available Not Available
Python 3.9.13 Available Not Available
Python 3.8.10 Available Available
Python 3.7.9 Available Available
Python 3.6.8 Available Available

Installing the eBUS SDK

Installing the eBUS Python package on Windows

Since the eBUS SDK Python API is not part of the eBUS SDK on Windows, we must first install the
base eBUS SDK using the Windows installation package, then install the appropriate eBUS Python
package for the specific version of Python you are using. You can download the eBUS SDK and the
associated eBUS Python packages from the Pleora Support Center at supportcenter.pleora.com.

If you use the Linux operating system, you must install the eBUS SDK as superuser. For full details about
0 installing the eBUS SDK for Linux, see the eBUS SDK for Linux Quick Start Guide, available at the Pleora
Support Center (supportcenter.pleora.com).

10

eBUS SDK Python API Quick Start Guide

https://supportcenter.pleora.com

Installation of eBUS-Python dependency packages

The following dependency packages are required for eBUS-Python:

Python (3.6, 3.7, 3.8, 3.9, and /or 3.10)
pip

numpy

opencv-python (optional for some samples)

eBUS-Python

o p W Dd R

1. How to install Python on Windows

Installing and using Python on Windows is very simple. The installation procedure involves just three
steps:
1. Download the binaries (Python Releases for Windows | Python.org)

2. Run the executable installer.

3. Add Python to PATH environmental variables.

S Python 3.8.10 (64-bit) Setup T X

Install Python 3.8.10 (64-bit)

Select Install Now to install Python with default settings, or choose
Customize to enable or disable features.

python

8 Install launcher for all users (recommended)

windows 8 Add Python 3.8 to PATH Cancel

2. How to upgrade pip on Windows
From a terminal, run the following command:
python -m pip install --upgrade pip

If you have only one Python package installed and you have added the Python in your PATH. You can
call python everywhere.

If you have several Python packages installed, you should launch python from the installed location.

+ From a terminal, run the following command if you use python 3.8

e C:\Users\<username>\AppData\Local\Programs\Python\Python38>python -m
pip install --upgrade pip

Installing the eBUS SDK 11

3. How to install numpy on Windows
From a terminal, run the following command:
python -m pip install numpy

If you have several Python packages installed, you need to specify the python executable.
From a terminal run the following command with the default Python path, if you use python 3.8:

C:\Users\<username>\AppData\Local\Programs\Python\Python38>python -m pip install
numpy

4. (optional) How to install opencv-python on Windows

From a terminal, run the following command:

python -m pip install opencv-python

If you have several Python packages installed, you need to specify the python executable. From a
terminal, run the following command with the default Python installation path, if you use python 3.8:

C:\Users\<username>\AppData\Local\Programs\Python\Python38>python -m pip install
opencv-python

5. How to install eBUS-Python on Windows

From a terminal, run the following command:

python -m pip install <path of the package>\ebus_python-6.3.0-<build number>-
py<python version>-none-win_amdé64.whl

If you have several Python packages installed, you need to specify the python executable. From a

terminal, run the following command with the default Python installation path, if you use python 3.8:

12

eBUS SDK Python API Quick Start Guide

C:\Users\<username>\AppData\Local\Programs\Python\Python38\python -m pip install
<path of the package>\ebus_python-6.3.0-<build number>-py38-none-win_amd64.whl

Location of installed eBUS-Python on Windows

C:\Users\<username>\AppData\Local\Programs\Python\Python<Python
version>\Lib\site-packages\ebus-python

With the default installation path if you use python 3.8:

C:\Users\<username>\AppData\Local\Programs\Python\Python38\Lib\site-
packages\ebus-python

Installing the eBUS SDK 13

14

eBUS SDK Python API Quick Start Guide

Chapter 4

Using the Sample Code

To illustrate how you can use the eBUS SDK Python API to acquire and transmit images, the SDK

includes sample code that you can use. This chapter provides a description of the sample code.
The following topics are covered in this chapter:

» “Overview: System Components” on page 16

 “Description of Samples” on page 17

Using the Sample Code 15

Overview: System Components

The following illustration shows the components that are used, illustrating the relationship between the

eBUS SDK, GigE Vision receivers, GigE Vision transmitters, and USB3 Vision transmitters.

GigE Vision Transmitter
Image source GigE Vision Receiver

0\\ Video receiyecand display
Ethernet

Video
Network
Management
Entity
Configuring

==

USE3 Vision Receiver
Image source

erd
=
o
@
o
=
@®
o]
=]
=

Network

i
Software-Based —
Video Processing Unit
Receiving images with the Image Processing and
eBUS SDK, modifying them, and Display Applications
retransmitting them using Receiving image stream with
the eBUS SDK the eBUS SDK

16 eBUS SDK Python API Quick Start Guide

Description of Samples

The following table lists the Python sample applications that are available. For more information about the
C++ samples that are also available, see the eBUS SDK C++ API Quick Start Guide. For information about
the C# and VB.NET samples that are also available, see the eBUS SDK .NET API Quick Start Guide.

Table 2: Sample Code

Type of application that

Sample code Function is created
Getting Started
PvStreamSample This “Hello World” sample shows you how to connect to Command line.

a GigE Vision or USB3 Vision device, receive an image
stream, stop streaming, and disconnect from the
device.

o All platforms

Image Streaming

ReceiveMultiPartSample

This sample shows how to connect to a GigE Vision
device and receive a stream of multi-part payload type.
The images that are acquired are displayed on screen
using different windows. The SoftDeviceGEVMultiPart
sample can be used to instantiate a software GigE
Vision Device with a multi-part interface

Command line.

¢ All platforms

PvPipelineSample

This sample extends the "Hello World" PvStreamSample
by showing how buffers are managed internally by the
PvPipeline class. This removes some of the complexity
of buffer management from the application when
compared to the PvStream sample.

Command line.

¢ All platforms

MultiSource

This command line sample for GigE Vision devices
shows you how to receive images from a GigE Vision
device that has multiple streaming sources.

Command line.
¢ All platforms

* For GigE Vision
devices only

ImageProcessing

This sample illustrates how to acquire an image and
process it using an external buffer to interface with a
non-Pleora library. This is useful when you want to
interface the eBUS SDK to popular third-party SDKs for
image processing or machine learning, such as OpenCV.

Command line.

* All platforms

Discovery and Connection

DeviceFinder

This sample shows how to detect and enumerate GigE
Vision and USB3 Vision devices on the network.

Command line.

e All platforms

Using the Sample Code

17

Table 2: Sample Code (Continued)

Sample code

ConnectionRecovery

Function

This sample shows how to automatically recover from
connectivity issues, such as accidental disconnects and
power interruptions, to build more robustness into your
eBUS SDK application.

Type of application that

is created

Command line.

e All platforms

Configuration and Event Monitoring

DeviceSerialPort

This sample shows how to send commands to a camera
or other device that accepts serial input commands
through a compatible Pleora iPORT videointerface using
the Pleora device's General Purpose Input/Output
(GPIO) signals, including UART or BULK.

Command line.

e All platforms

GenlCamParameters

This sample shows how to enumerate and display the
GenlCam features and settings of a GenlCam-
compatible device by discovering and accessing the
features of the device's node map. The node map is built
programmatically from the device’s GenlCam XML file.

Command line.

* All platforms

eBUS Edge Code Samples

SoftDeviceGEVSimple

This sample shows how to create a basic software GigE
Vision device with one streaming source and a single
pixel type. A sample test pattern is generated as a
streaming source.

Command line.

e All platforms

SoftDeviceGEV

This sample shows how to create a fully functioning
software GigE Vision device with multiple streaming
sources and fixed width and height pixel types. A sample
test pattern is generated as a streaming source. This
sample also illustrates how to implement custom
GenApi features and device registers, as well as how to
access the GVCP messaging channel to send eventsand
chunk data.

Command line.

* All platforms

SoftDeviceGEVMultiPart

This sample shows how to use PvSoftDeviceGEV to
create a software GigE Vision multi-part transmitter
device.

Command line.

* All platforms

18

eBUS SDK Python API Quick Start Guide

Chapter b

Code Walkthrough: Acquiring Images with the eBUS

SDK

This section walks you through the code contained in PvStreamSample. This sample illustrates how to

detect available devices, connect to a device, and start an image stream.

The following topics are covered in this chapter:

“Accessing the Python Sample Code” on page 20
“Classes Used in the PvStreamSample” on page 21
“Module Imports” on page 21

“PvStreamSample” on page 22

“The connect_to_device Function” on page 27

“The open_stream Function” on page 28

“The configure_stream Function” on page 29

“The configure_stream_buffers Function” on page 30

“The acquire_images Function” on page 27

Code Walkthrough: Acquiring Images with the eBUS SDK 19

Accessing the Python Sample Code

The Python sample code is available in the following locations:

* Windows.

You can access the Python sample code here:
PYTHON_INSTALLATION_PATH\Lib\site-packages\ebus-python\samples

For example, you can use the following formatted text when accessing the Python sample code.
This information applies to the default installation options available for Python 3.10 on Windows

11:

C:\Users\<username>\AppData\Local\Programs\Python\Python310\Lib\site-
packages\ebus-python\samples

¢ Linux.

You can access the Python sample code here:

opt/pleora/ebus_sdk/<distribution targeted>/share/samples/python/ebus

You must copy the sample code to a location on your computer (such as your C: drive) before you open the
U sample code in your Visual Studio Code. On the Windows operating system, access to these directories is

restricted.

Required ltems
The sample code requires that you have a GigE Vision device connected to a NIC on your computer or

a USB3 Vision device connected to a USB 3.0 port on your computer.

Camera
GigE Vision or USB3 Vision

Ethernet or USB3 3.0

7 N

Development Computer

20 eBUS SDK Python API Quick Start Guide

Windows and Linux Support

PvStreamSample can be used on the Windows and Linux operating systems. Platform-specific code is

abstracted by PvSampleUtils.py, which is installed on your computer as part of the eBUS SDK.

Classes Used in the PvStreamSample

PvStreamSample uses the classes listed in the following table.

Table 3: Classes Used in the Sample

Class Description

PvDevicelnfo Used to access information about a device, such as its manufacturer information, protocol
(either GigE Vision or USB3 Vision), serial number, ID, and version.

PvDevice Used to connect to and control a device and initiate the image stream. Protocol and interface-
specific functionality is available in two subclasses, PvDeviceGEV and PvDeviceU3V.

PvStream Provides access to the image stream. Like PvDevice, there are protocol and interface-specific
subclasses, PvStreamGEV and PvStreamU3V.

PvBuffer Represents a block of data from the device, such as an image.

PvResult A simple class that represents the result of various eBUS SDK functions.

Module Imports

The following modules are required by the sample. Please note that the PvSampleUtils.py module

provides some basic helper and multi-platform routines:

Python

import numpy as np
import eBUS as eb
import lib.PvSampleUtils as psu

Code Walkthrough: Acquiring Images with the eBUS SDK 21

PvStreamSample

The PvStreamSample allows the user to select a device, connect to a device (connect_to_device), start the
image stream (open_stream, configure_stream, configure_stream_buffers), and process the image
stream (acquire_images). To perform these tasks, the following objects are required:

A PvDeviceInfo object, which indicates the device that the user has selected for streaming,

A PvDevice object, which allows the user to control the selected device.

A PvStream object, which is used to receive the image stream for the selected device.
kb.start(), kb.getch() and kb.kbhit() are platform-independent helper functions. This function is
provided in the PvSampleUtils module.

Python

print("PvStreamSample:")

connection_ID = psu.PvSelectDevice()
if connection_ID:
device = connect_to_device(connection_ID)
if device:
stream = open_stream(connection_ID)
if stream:
configure_stream(device, stream)
buffer_list = configure_stream_buffers(device, stream)
acquire_images(device, stream)
buffer_list.clear()

Close the stream
print("Closing stream")
stream.Close()
eb.PvStream.Free(stream);

Disconnect the device
print("Disconnecting device")
device.Disconnect()
eb.PvDevice.Free(device)

print("<press a key to exit>")
kb.start()
kb.getch()
kb.stop()

22

eBUS SDK Python API Quick Start Guide

The connect_to_device Function

C

¢

connect_to_device establishes a connection with the device.

GigE Vision and USB3 Vision devices are represented by different classes (PvDeviceGEV and PvDeviceU3V)
and they share a parent class (PvDevice) that abstracts most of the differences. When possible, you should
use a PvDevice object instead of a protocol-specific object to reduce code duplication. To create a
PvDevice object from a PvDeviceInfo object without explicitly checking the protocol of the device, use
the CreateAndConnect static factory method from the PvDevice class, which abstracts the device type.

It is important that objects allocated with CreateAndConnect be freed with PvDevice.Free, as shown later
in the sample.

If it is not important for your application to support both GigE Vision and USB3 Vision devices (for example,
your organization only uses devices of a particular type), you can call the GetType method of the
PvDeviceInfo object (aDeviceInfo) to determine whether the device is GigE Vision or USB3 Vision. Then
you could create a new PvDeviceGEV or PvDeviceU3V object and call the Connect method directly.

A PvDevice object is returned and can now be used to control the device and initiate streaming,

Python

def connect_to_device(connection_ID):
Connect to the GigE Vision or USB3 Vision device
print("Connecting to device.")
result, device = eb.PvDevice.CreateAndConnect(connection_ID)
if device == None:
print(f"Unable to connect to device: {result.GetCodeString()} ({result.GetDescription()})")
return device

Code Walkthrough: Acquiring Images with the eBUS SDK

23

The open_stream Function

open_stream initiates the image stream. Again, the sample uses a static factory method (CreateAndOpen)

to create and open the PvStream object, which allows your application to support both GigE Vision and
USB3 Vision devices.

A pointer to the PvStream object is returned and can now be used to receive images as PvBuffer objects.

Python

def open_stream(connection_ID):
Open stream to the GigE Vision or USB3 Vision device
print("Opening stream from device.")
result, stream = eb.PvStream.CreateAndOpen(connection_ID)
if stream == None:

print(f"Unable to stream from device. {result.GetCodeString()} ({result.GetDescription()})")
return stream

24

eBUS SDK Python API Quick Start Guide

The configure_stream Function

For most of this sample, there is no need to distinguish between GigE Vision or USB3 Vision devices, as
the eBUS SDK classes abstract the device type. However, when using a GigE Vision device, you must set
a destination IP address for the image stream. In this sample, the destination is automatically set to be the
IP address of the network interface card on the PC used to interface with the device (which is the most

common configuration).

Also, for optimal performance over Gigabit Ethernet, it is necessary to determine the largest possible
packet size for the connection (ideally the link would use jumbo frames — typically about 9000 bytes).
This is the only place in the application where we check the device type.

7 Jumbo frames are configured on your computer’s network interface card (NIC). For more information, see
M the operating system documentation or the Configuring Your Computer and Network Adapters for Best
Performance Knowledge Base Article, available on the Pleora Support Center at supportcenter.pleora.com.

When developing your application, you may prefer to hard-code the packet size based on your target
B system, instead of using PvDeviceGEV.NegotiatePacketSize.

First, we determine if the PvDevice object represents a GigE Vision device. If it is a GigE Vision device,
we do the required configuration. If it is a USB3 Vision device, no stream configuration is required for

this sample.

Python

def configure_stream(device, stream):
If this is a GigE Vision device, configure GigE Vision specific streaming parameters
if isinstance(device, eb.PvDeviceGEV):
Negotiate packet size
device.NegotiatePacketSize()
Configure device streaming destination
device.SetStreamDestination(stream.GetLocalIPAddress(), stream.GetLocalPort())

Code Walkthrough: Acquiring Images with the eBUS SDK 25

https://supportcenter.pleora.com

The configure_stream_buffers Function

configure_stream_buffers allocates memory for the received images.

PvStream contains two buffer queues: an “input” queue and an “output” queue. First, we add PvBuffer
objects to the input queue of the PvStream object by calling PvStream.QueueBuffer once per buffer. As
images are received, PvStream populates the PvBuffers with images and moves them from the input
queue to the output queue. The populated PvBuffers are removed from the output queue by the
application (using PvStream.RetrieveBuffer), processed, and returned to the input queue (using
PvStream.QueueBuffer).

The memory allocated for PvBuffer objects is based on the resolution of the image and the bit depth of
the pixels (the payload) retrieved from the device using PvDevice.GetPayloadSize. The device returns the

number of bytes required to hold one buffer, based on the configuration of the device.

When designing applications that deal with higher frame rate streams or that run on slower platforms, it

0 may be necessary to increase the BUFFER_COUNT (to give you some margin for performance dips when you
cannot process buffers fast enough for a short period). This allows the application to avoid a scenario
where all buffers are in the output queue awaiting retrieval, and none are available in the input queue to
store newly-received images.

Python

def configure_stream_buffers(device, stream):
buffer_list = []
Reading payload size from device
size = device.GetPayloadSize()

Use BUFFER_COUNT or the maximum number of buffers, whichever is smaller
buffer_count = stream.GetQueuedBufferMaximum()
if buffer_count > BUFFER_COUNT:

buffer_count = BUFFER_COUNT

Allocate buffers

for 1 in range(buffer_count):
Create new pvbuffer object
pvbuffer = eb.PvBuffer()
Have the new pvbuffer object allocate payload memory
pvbuffer.Alloc(size)
Add to external list - used to eventually release the buffers
buffer_list.append(pvbuffer)

Queue all buffers in the stream

for pvbuffer in buffer_list:
stream.QueueBuffer(pvbuffer)

print(f"Created {buffer_count} buffers")

return buffer_list

26 eBUS SDK Python API Quick Start Guide

The acquire_images Function

In the acquire_images function, we acquire images from the device.

First the sample retrieves an array of GenlCam features that will be used to control the device. These
features are defined in the GenlCam XML file that is present on all GigE Vision and USB3 Vision
devices. Then, it maps two GenICam commands from the array to local variables that will be used later

to start and stop the stream.

Next, it retrieves an array of GenlCam features that represent the stream parameters. It maps two
GenlCam floating point values that represent stream statistics, which will later be used to display the data

rate and bandwidth during image acquisition.

Python

def acquire_images(device, stream):
Get device parameters need to control streaming
device_params = device.GetParameters()

Map the GenICam AcquisitionStart and AcquisitionStop commands
start = device_params.Get("AcquisitionStart™)
stop = device_params.Get("AcquisitionStop")

Get stream parameters
stream_params = stream.GetParameters()

Map a few GenICam stream stats counters
frame_rate = stream_params.Get("AcquisitionRate™)
bandwidth = stream_params["Bandwidth"]

To start the image stream, we enable streaming on the device (PvDevice.StreamEnable) and execute the

GenlCam AcquisitionStart command (start).

For GigE Vision devices, StreamEnable sets the TLParamsLocked feature, which prevents changes to the
streaming related parameters during image acquisition.

For USB3 Vision devices, it sets the TLParamsLocked feature, configures the USB driver for streaming, and
sets the stream enable bit on the device.

Python

Enable streaming and send the AcquisitionStart command
print("Enabling streaming and sending AcquisitionStart command.")
device.Streamenable()
start.Execute()

Code Walkthrough: Acquiring Images with the eBUS SDK 27

In the next section, we set up a doodle that will indicate to the user that images are being acquired. The
doodle will animate every time a buffer is returned using RetrieveBuffer (regardless of whether we got
an image or a timeout) until the user presses a key. We also initialize variables to access GenlCam statistics

(block count, acquisition rate, and bandwidth) that were retrieved earlier.

Next, we start the loop, retrieve the first PvBuffer, and check the results. When we retrieve the PvBuffer
object, we remove it temporarily from the PvStream output buffer queue and process it. When processing

is complete, we add the PvBuffer object back into the input buffer queue.

To verify that a buffer has been retrieved successfully from the stream object and to verify the acquisition
of an image, we examine the two values supplied by RetrieveBuffer. First, we check the value of a

PvResult object (result) to determine that a buffer has been retrieved. If a buffer has been retrieved, then
it checks the value of the PvResult object (operational_result) to verify the acquisition operation (for

example, it checks if the operation timed out, had too many resends, or was aborted.)

Python

print("\n<press a key to stop streaming>")
kb.start()
while not kb.is_stopping():
Retrieve next pvbuffer
result, pvbuffer, operational_result = stream.RetrieveBuffer(1000)
if result.IsOK():
if operational_result.IsOK():
#
We now have a valid pvbuffer. This is where you would typically process the pvbuffer.

result, frame_rate_val = frame_rate.GetValue()
result, bandwidth_val = bandwidth.GetValue()

print(f"{doodle[doodle_index]} BlockID: {pvbuffer.GetBlockID()}", end='")

payload_type = pvbuffer.GetPayloadType()

28

eBUS SDK Python API Quick Start Guide

Now that we have obtained a PvBuffer with an image, we display some general statistics retrieved from
the device, including block ID, width, height, and bandwidth. This is the point at which your application
would typically process the buffer. Then, we discard the image and requeue the PvBuffer object in the
input queue by calling PvStream.QueueBuffer.

It is important to note that the stream may not contain an image, so we use the PvPayloadType
enumeration to check that an image is included. For example, PvPayloadType can be
PvPayloadTypeImage, PvPayloadTypeUndefined (an undefined or non-initialized payload type), or
PvPayloadTypeChunk, PvPayloadTypeRawData, or PvPayloadTypeMultiPart.

Python

if payload_type == eb.PvPayloadTypeImage:
image = pvbuffer.GetImage
image_data = image.GetDataPointer()
print(f" W: {image.GetWidth()} H: {image.GetHeight()} ", end="")

if opencv_is_available:
if image.GetPixelType() == eb.PvPixelMono8:
display_image = True
if image.GetPixelType() == eb.PvPixelRGBS8:
image_data = cv2.cvtColor(image_data, cv2.COLOR_RGB2BGR)
display_image = True

if display_image:
cv2.imshow("stream",image_data)
else:
if not warning_issued:
display a message that video only display for Mono8 / RGB8 images
print(f" ")
print(f" Currently only Mono8 / RGB8 images are displayed", end='\r'")
print(f"")
warning_issued = True

if cv2.waitKey(1) & OxFF != OXFF:
break

elif payload_type == eb.PvPayloadTypeChunkData:
print(f" Chunk Data payload type with {pvbuffer.GetChunkCount()} chunks", end='")

elif payload_type == eb.PvPayloadTypeRawData:
print(f" Raw Data with {pvbuffer.GetRawData().GetPayloadLength()} bytes", end='")

elif payload_type == eb.PvPayloadTypeMultiPart:
print(f" Multi Part with {pvbuffer.GetMultiPartContainer().GetPartCount()} parts", end='")

else:
print(" Payload type not supported by this sample", end='")

If operational_result returns something other than 0K, a PvBuffer object has been retrieved, but it is

not valid (for example, only part of the image could be retrieved or a timeout occurred). In this case, an

Code Walkthrough: Acquiring Images with the eBUS SDK 29

error message is presented and we also re-queue the PvBuffer object back to the PvStream object so it can

be used again.

Python

else:

Non OK operational result

print(f"{doodle[doodle_index]} {operational_result.GetCodeString()} ", end="\r")
Re-queue the pvbuffer in the stream object
stream.QueueBuffer(pvbuffer)

If result returns something other than OK, a PvBuffer object was not retrieved and therefore there is no

PvBuffer to requeue. In this case the error message is also presented to the user.

Python

else:
Retrieve pvbuffer failure
print(f"{doodle[doodle_index]} {result.GetCodeString()} ", end="\r")

doodle_index = (doodle_index + 1) % 6

The remainder of the sample is used to stop acquisition and clean up resources when the user presses a

key. First, we execute the GenlCam AcquisitionStop command (stop). Then, we disable the stream.

For GigE Vision devices, StreamDisable resets the TLParamsLocked feature, which allows changes to the
streaming related parameters to occur.

For USB3 Vision devices, StreamDisable resets the TLParamsLocked feature and sets the stream enable
bit on the device.

Python

kb.stop()
if opencv_is_available:
cv2.destroyAllWindows ()

Tell the device to stop sending images.
print("\nSending AcquisitionStop command to the device")
stop.Execute()

Disable streaming on the device
print("Disable streaming on the controller.")
device.StreamDisable()

30

eBUS SDK Python API Quick Start Guide

Now that streaming has stopped, we mark all of the buffers in the input queue as aborted (using

PvStream.AbortQueuedBuffers), which moves the buffers to the output queue.

. For PvStreamGEV objects, before resuming streaming after a pause, you should flush the queue using
M PvStreamGEV.FlushPacketQueue, which removes all unprocessed UDP packets from the data receiver.

Python

Abort all buffers from the stream and dequeue
print("Aborting buffers still in stream")
stream.AbortQueuedBuffers ()

while stream.GetQueuedBufferCount() > 0:
result, pvbuffer, lOperationalResult = stream.RetrieveBuffer()

If your application does not abort queued buffers, your application will receive timeout errors when you

restart PvStreanm, since the buffers in the input queue will have exceeded the timeout value.

While our sample does not necessarily require that we abort and remove the buffers from the queue
(because we do not restart PvStream in this sample), it is included in this sample to illustrate the concept

of clearing buffers.

Finally, we remove all of the buffers from the queue (using PvStream.RetrieveBuffer) so they can be

requeued the next time the stream is enabled.

Code Walkthrough: Acquiring Images with the eBUS SDK

31

32

eBUS SDK Python API Quick Start Guide

Chapter 6

Troubleshooting

This chapter provides you with troubleshooting tips and recommended solutions for issues that can occur

when using the eBUS SDK Python API, GigE Vision, and USB3 Vision devices.

Not all scenarios and solutions are listed here. You can refer to the Pleora Technologies Support Center at
U supportcenter.pleora.com for additional support and assistance. Details for creating a customer account
are available on the Pleora Technologies Support Center.

» Referto the product release notes that are available on the Pleora Technologies Support Center for known
ly issues and other product features.

Troubleshooting Tips

The scenarios and known issues listed in this chapter are those that you might encounter during the setup
and operation of your device. Notall possible scenarios and errors are presented. The symptoms, possible

causes, and resolutions depend upon your particular setup and operation.

If you perform the resolution for your issue and the issue is not corrected, we recommend you review the
U other resolutions listed in this table. Some symptoms may be interrelated.

Troubleshooting 33

https://supportcenter.pleora.com/s/

Table 4: Troubleshooting Tips
Symptom

SDK cannot detect or
connect to the Pleora device

Possible cause

Power not supplied to the
device, or inadequate power
supplied

Resolution

Both the detection and connection to the
device will fail if adequate power is not supplied
to the device.

Verify that the Network LED is active. For
information about the LEDs, see the
documentation accompanying the device.

Re-try the connection to the device with your
application.

The GigE Vision device is not
connected to the network

Verify that the network LED is active. If this LED
is illuminated, check the LEDs on your network
switch to ensure the switch is functioning
properly. If the problem continues, connect the
device directly to the computer to verify its
operation. For information about the LEDs, see
the documentation accompanying the device.

The GigE Vision device and
computer are not on the same
subnet

Images might not appear in your application if
the GigE Vision device and the computer
running your application are not on the same
subnet. Ensure that these devices are on the
same subnet. In addition, ensure that these
devices are connected using valid gateway and
subnet mask information. You can view the IP
address information in the Available Devices
list in your application. A red icon appears
beside the device if there is an invalid IP
configuration.

SDK cannot detect the APl or
transmitter

NIC that is receiving and NIC
that is transmitting are on
different subnets

Ensure the transmitting and receiving NICs are
on the same subnet.

Errors appear

For GigE Vision devices, the
drivers for your NIC may not be
the latest version

Ensure you have installed the latest drivers
from the manufacturer of your NIC.

34

eBUS SDK Python API Quick Start Guide

Table 4: Troubleshooting Tips (Continued)

Symptom

SDK is able to connect, but
no images appear in your
application.

In a multicast GigE Vision
configuration, images appear
on a display monitor
connected to a vDisplay HDI-
Pro External Frame Grabber
but do not appear in your
application.

Possible cause

In a multicast configuration,
the device may not be
configured correctly

Resolution

Images only appear on the display if you have
configured the device for a multicast network
configuration. The device and all multicast
receivers must have identical values for both
the GevSCDA and GevSCPHostPort featuresin
the TransportLayerControl section. For more
information, see the documentation
accompanying the device.

In a multicast configuration,
your computer’s firewall may
be blocking your application

Ensure that your application is allowed to
communicate through the firewall.

Anti-virus software or firewalls
blocking transmission

Images might not appear in your application
because of anti-virus software or firewalls on
your network. Disable all virus scanning
software and firewalls, and re-attempt a
connection to the device with your application.

Ensure jumbo packets are
properly configured for the NIC

Enable jumbo packet support for the NIC and
network switch (as required). If the NIC or
network switch does not support jumbo
packets, disable jumbo packets for the
transmitter.

Troubleshooting

35

Table 4: Troubleshooting Tips (Continued)

Symptom Possible cause Resolution

Dropped packets: eBUS Insufficient computer The computer being used to receive images
Player, or applications performance from the device may not perform well enough to
created using the eBUS SDK handle the data rate of the image stream. The

GigE Vision driver reduces the amount of
computer resources required to receive images
and is recommended for applications that
require high throughput. Should the application
continue to drop packets even after the
installation of the GigE Vision driver, a
computer with better performance may be
required.

Insufficient NIC performance The NIC being used to receive images from the
GigE Vision device may not perform well
enough to handle the data rate of the image
stream. For example, the bus connecting the
NIC to the CPU may not be fast enough, or
certain default settings on the NIC may not be
appropriate for reception of a high-throughput
image stream. Examples of NIC settings that
may need to be reconfigured include the
number of Rx Descriptors and the maximum
size of Ethernet packets (jumbo packets).
Additionally, some NICs are known to not work
well in high-throughput applications.

For information about maximizing the
performance of your system, see the
Configuring Your Computer and Network
Adapters for Best Performance Application
Note, available on the Pleora Support Center.

eBUS SDK Python API Quick Start Guide

Chapter 7

Technical Support

On the Pleora Support Center, you can:

* Download the latest software and firmware.

 Loga support issue.

* View documentation for current and past releases.

¢ Browse for solutions to problems other customers have encountered.

¢ Read knowledge base articles for information about common tasks.

To visit the Pleora Support Center
* Go to supportcenter.pleora.com.

Most material is available without logging in to a Support Center account. To access software and
firmware downloads, in addition to other content, log in to the Support Center. If you do not have
an account, click Request Account.

Accounts are usually validated within one business day.

Technical Support 37

https://supportcenter.pleora.com/s/

38

eBUS SDK Python API Quick Start Guide

	Trademarks
	Notice of Rights
	About this Guide
	What this Guide Provides
	Related Documents

	Introducing the eBUS SDK Python API
	About the eBUS SDK Python API
	eBUS Edge for Sensor Devices
	eBUS Receive for Host Applications

	eBUS SDK Licenses
	eBUS Receiver License
	GigE Vision Devices Created with the eBUS Edge API
	Activating an eBUS SDK License

	Installing the eBUS SDK
	System Requirements
	Python Releases for Windows

	Installing the eBUS Python package on Windows
	Installation of eBUS-Python dependency packages
	1. How to install Python on Windows
	2. How to upgrade pip on Windows
	3. How to install numpy on Windows
	4. (optional) How to install opencv-python on Windows
	5. How to install eBUS-Python on Windows
	Location of installed eBUS-Python on Windows

	Using the Sample Code
	Overview: System Components
	Description of Samples

	Code Walkthrough: Acquiring Images with the eBUS SDK
	Accessing the Python Sample Code
	Required Items
	Windows and Linux Support

	Classes Used in the PvStreamSample
	Module Imports
	PvStreamSample
	The connect_to_device Function
	The open_stream Function
	The configure_stream Function
	The configure_stream_buffers Function
	The acquire_images Function

	Troubleshooting
	Troubleshooting Tips

	Technical Support

