TNE-022A-20190402-00

Technical Note
JAI SDK to eBUS SDK Migration Guide

JAI SDK to eBUS SDK Migration Guide

Overview

This guide is designed to help current users of the JAI SDK migrate their applications to the new eBUS SDK by
Pleora. Since there’s no one-to-one correspondence between the functions in the two SDKs, this guide aims
to shows how similar camera operations as a whole can be performed in each SDK and points out any
significant differences.

The guide assumes that the reader is familiar with the JAI SDK and how to use it with GenlCam cameras.
Code examples will be shown using the C/C++ API in both SDKs since this is most commonly used API.

1. SDK Differences in a Nutshell

JAI SDK eBUS SDK
Windows, Linux (x86) Windows

Free but unlicensed cameras have

Sost Free watermarked images

No license required License required for non-JAl cameras
API languages C, .NET languages C++, .NET languages
Windows development Visual Studio 2005 through Visual Studio 2008, 2010, 2012, 2013,
requirements 2012 and 2015

GigE, USB3, GenTL (CXP,
Cameralink)

All formats used by JAI All formats used by JAl cameras, most
cameras, most PFNC formats PFNC formats

Camera interfaces supported GigE, USB3

Pixel Formats supported

ObjectOriented Programming el EY eI \ATo N\ 3 WAV All APIs are class-based

Figure 1 - SDK basic features comparison

N

Current JAI SDK functionality not in the eBUS SDK

e Automatic ForcelP

« HDR on host

« Image flip and rotate

e Color histograms

e Lookup Tables on host

» Special image processing functions like color correction and lens distortion correction

www.jai.com See the possibilities

TNE-022A-20190402-00

Technical Note
JAI SDK to eBUS SDK Migration Guide

3. Comparison of basic operation between the SDKs

3.1 Enumerating and opening cameras
In the JAI SDK the factory object has complete knowledge of the system and is how cameras can be

discovered and accessed. In the eBUS SDK the PvSystem object plays a similar role.

Note that in the JAI SDK objects can only be accessed through handles while in eBUS they are user-
accessible classes.

JAI SDK:

J_STATUS TYPE rc;

FACTORY HANDLE hFactory;

CAM HANDLE hCamera;

bool8 t bHasChanged;

uint32 t iNumCameras;

int8 t sCameraId[J CAMERA ID SIZE];
uint32 t size;

// Open the Factory
rc = J Factory Open((int8 t*)"" , &hFactory);

// Search for cameras on all interfaces
rc = J Factory UpdateCameralist (hFactory, &bHasChanged);

// Get the number of cameras
rc = J Factory GetNumOfCameras (hFactory, &iNumCameras);

// Get camera ID of first camera
size = sizeof (sCamerald);
rc = J Factory GetCameralIDByIndex (hFactory, 0, sCameralId, é&size);

// And open the camera and get a handle to it
rc = J Camera Open (hFactory, sCamerald, &hCamera);

eBUS SDK:

PvResult lResult;
PvSystem lSystem;
uint32 t iNumCameras;
PvDevice* plDevice;

// Search for cameras on all interfaces
1Result = 1lSystem.Find();

// Get the number of cameras
iNumCameras = 1System.GetDeviceCount () ;

// Get pointer to DeviceInfo of first camera
const PvDevicelInfo* plDeviceInfo = lSystem.GetDeviceInfo (0);

// Create and connect to camera as a PvDevice

www.jai.com 2 See the possibilities

TNE-022A-20190402-00

Technical Note
JAI SDK to eBUS SDK Migration Guide

// Note: To access GigE or USB3-specific camera attributes the pointer to
PvDevice will
// need to be explicitly cast to the subclass PvDeviceGEV or PvDeviceU3V

plDevice = PvDevice::CreateAndConnect (plDeviceInfo, &lResult);

3.2 Accessing camera features

Accessing camera features is relatively trivial with the JAI SDK while eBUS requires a bit more setup to
access a feature.

JAI SDK:

// Set exposure time to 5000us, note that ExposureTime is a float feature
rc = J Camera SetValueDouble (hCamera, "ExposureTime", 5000.0);

eBUS SDK:

// Access the exposure time node as a pointer to a GenICam float feature and
set it to 5000 us

PvGenParameterArray* plDeviceGenParams = plDevice->GetParameters();
PvGenFloat* plExposureTime = dynamic cast<PvGenFloat *>(plDeviceGenParams-
>Get ("ExposureTime")) ;

1Result = plExposureTime->SetValue (5000.0);

// Note that this could also be done in a single line like so:

//1Result = dynamic cast<PvGenFloat *>(plDevice->GetParameters()-
>Get ("ExposureTime")) ->SetValue (5000.0) ;

3.3 Setting up streaming and acquiring images

In the JAI SDK the DataStream object is responsible for setting up the flow of images from the camera
to the host and notifying the user that a new image buffer has arrived. The mechanics of waiting on a
new buffer, retrieving it, and ultimately re-queuing it are left up to the user as well as
allocating/freeing buffers. An acquisition callback function will handle all of these tasks automatically
but in an acquisition thread they must be done explicitly by the user.

In eBUS SDK there is a PvStream class which functions similarly to the JAI data stream object. However,
there is an additional class, PvPipeline, which manages acquired buffers and automates some of the
buffer-related tasks that the JAI data stream object does not handle. A PvPipeline object associated
with a PvStream is basically a loop that continually checks for new buffers. If a new buffer arrives and
the user has requested one through a function like RetrieveNextBuffer, it is passed to the user.
Otherwise the buffer is immediately re-queued to the stream. This keeps the image output queue from
backing up and the driver from running out of free buffers. The PvPipeline class also handles
automatically re-sizing buffers if the size of streamed images changes.

3.3.1 Using callback functions

One of the biggest differences in the two SDKs is how acquisition using callback functions is
handled. The JAI SDK has a single function for registering a callback function that will be called

®

www.jai.com 3 See the possibilities

TNE-022A-20190402-00

Technical Note
JAI SDK to eBUS SDK Migration Guide

whenever a new buffer is ready. Acquisition by callback function is easy but generally not the
most efficient way of handling and processing buffers since a copy of each buffer must be made
before the function returns. In the eBUS SDK setting up and using a callback function is more
involved which is probably a subtle way of discouraging its use.

To get the equivalent functionality as the JAI SDK it’s necessary to sub-class the virtual class
PvPipelineEventSink and implement the function OnBufferReady which will be called whenever a
new buffer has been retrieved from the stream by the pipeline.

[Note that since OnBufferReady is in a separate class and only receives a pointer to the pipeline,
it will not have direct access to any display windows and cannot display images. See the sample
StreamCallbackSample to see how can be handled via a custom constructor.]

JAI SDK:

uint32 t iImageSize; // size of image in bytes
THRD HANDLE hThread;

// Register the acquisition callback function and then open stream

void *vfptr = reinterpret cast<void*>(AcquisitionCBFunc);

J_IMG CALLBACK FUNCTION *cbfptr =

reinterpret cast<J IMG CALLBACK FUNCTION*> (&vfptr);

rc = J_Image OpenStream(hCamera, 0, NULL, *cbfptr, &hThread, iImageSize);

// Acquisition call back function
static void _ stdcall AcquisitionCBFunc(J_ tIMAGE INFO *pAgImageInfo)
{

// Image data is available in pAgImageInfo->pImageBuffer

// Do processing of image here and return when done

}

eBUS SDK:

// Derived class to handle pipeline events
class MyPipelineEventSink : public PvPipelineEventSink
{
public:
MyPipelineEventSink (void) ;

// New buffers will be received and displayed in this function
void OnBufferReady (PvPipeline *poPipeline);
bi

// Callback function that's called when a new buffer has been
delivered to the pipeline

void MyPipelineEventSink::0nBufferReady (PvPipeline *poPipeline)
{

PvBuffer* poBuffer = NULL;

Wwww.jai.com 4 See the possibilities

TNE-022A-20190402-00

Technical Note
JAI SDK to eBUS SDK Migration Guide

PvResult oResult, oOperationResult;

// Get next available buffer, timeout after 1000ms
oResult = poPipeline->RetrieveNextBuffer (&poBuffer, 1000,
&oOperationResult) ;
if (oResult.IsOK() && oOperationResult.IsOK())
{
// Do something with buffer here
//

// Handle error (s)

3.3.2 Using threads

Since thread functions are very OS-specific, we have chosen to show threads as implemented in
Windows.

To use an acquisition thread in the JAI SDK it’s necessary to create a DataStream object attached
to the camera and a DataStream event that is registered to the EVENT_NEW_BUFFER event. This

can be done outside of the thread or within the thread as long as these variable are accessible in
the thread.

Then loop on the function call J_Event_WaitForCondition and wait for the condition to be met.
Then the buffer information can be read out field by field into a J_tIMAGE_INFO structure. This
image buffer can be processed within the thread or passed as a pointer to some other processing.
When you are finished with the buffer, it’s necessary to re-queue it using
J_DataStream_QueueBuffer to make it available for the driver to use again.

[Because of the number of steps involved rather than describe each step, | will refer the user to
the JAI sample programs StreamThreadSample or ConsoleExampleFullAcq.]

By contrast using acquisition threads with eBUS is much simpler because much of the setup and
work is already handled by the PvPipeline object. Most of the thread consists of just looping and
blocking on PvPipeline::ReceiveNextBuffer until a new buffer arrives.

JAI SDK:

int main(int argc, TCHAR* argv([])
{

// Create the thread
hAcgStreamThread = CreateThread (NULL, NULL,
(LPTHREAD START ROUTINE)AcquisitionThread, &index, NULL, NULL);

www.jai.com 5 See the possibilities

TNE-022A-20190402-00

Technical Note
JAI SDK to eBUS SDK Migration Guide

// Start acquisition on the camera, thread should be ready to
receive buffers

rc = J Camera ExecuteCommand (hCamera,
(int8 t*)"AcquisitionStart");

}

// Acquisition thread function
void AcquisitionThread (LPVOID lpdwThreadParam)

{
J_STATUS_TYPE rc;

STREAM HANDLE hDataStream = (STREAM HANDLE) lpdwThreadParam;
uint32 t iSize;

BUF HANDLE iBufferID;

HANDLE hCondition;

EVT HANDLE hStreamEvent;

J COND WAIT RESULT WaitResult;

EVENT NEW BUFFER DATA eventData; // Struct for EventGetData

J tIMAGE INFO tAgImageInfo = {0, 0, 0, 0, NULL, O, O, O, O, O, O};

// Create the condition used for signalling the new image event
rc = J Event CreateCondition (&hCondition);

// Create a stream event for new frame notification
gtCamInfo[iCamNum] .hStreamEvent = CreateEvent (NULL, true, false,
NULL) ;

// Register the event and associated condition with the
acquisition engine

rc = J DataStream RegisterEvent (hDataStream, EVENT NEW BUFFER,
hCondition, &hStreamEvent);

// Start image acquisition
rc = J DataStream StartAcquisition (hDataStream,
ACQ_START_NEXT_IMAGE, ULLONG_MAX);

// Acquisition loop
while (gbAcgThreadEnabled) {
// Wait for Buffer event (or kill event) or timeout after
1000ms
rc = J Event WaitForCondition (hCondition, 1000, &WaitResult);

// Did we get a new buffer event?

if (J _COND WAIT SIGNAL == WaitResult) {
uint64 t iFramesPending = 0;
uint64 t iRawPixelFormat;
uint64 t iReadValue;

www.jai.com 6 See the possibilities

TNE-022A-20190402-00

Technical Note
JAI SDK to eBUS SDK Migration Guide

other

// Get the Buffer Handle from the event

iSize = (uint32 t)sizeof (EVENT NEW BUFFER DATA) ;

rc = J Event GetData (hStreamEvent, &eventData,
&iSize);

iBufferID = eventData.BufferHandle;

// Fill in complete tAgImageInfo structure field by
field

// Get frame width
iSize = sizeof (size t);
rc =

J DataStream GetBufferInfo (gtCamInfo[iCamNum].hDataStream, iBufferID,
BUFFER INFO WIDTH, &iReadValue, &iSize); CHECK RC(rc,
"J DataStream GetBufferInfo failed");

tAgImageInfo.iSizeX = (uint32 t) iReadValue;
// Get frame height

iSize = sizeof (size t);

rc =

J DataStream GetBufferInfo(gtCamInfo[iCamNum].hDataStream, iBufferID,
BUFFER_INFO_HEIGHT, &1ReadValue, &iSize); CHECK_RC(rC,
"J DataStream GetBufferInfo failed");

tAgImageInfo.iSizeY = (uint32 t) iReadValue;

// Do any processing with image buffer here

//

// Then queue this buffer again for reuse in

acquisition engine

// or pass the buffer pointer/index on to some
thread that will requeue it when done
rc = J DataStream QueueBuffer (hDataStream,

iBufferID);

}

// Stop streaming
rc = J DataStream StopAcquisition (hDataStream,

ACQ STOP FLAG KILL);

// Unregister new buffer event
rc = J DataStream UnRegisterEvent (hDataStream, EVENT NEW BUFFER) ;

// Free the event object
J Event Close (hStreamEvent);

Www.jai.com

7 See the possibilities

TNE-022A-20190402-00

Technical Note
JAI SDK to eBUS SDK Migration Guide

// Free the Condition
J Event CloseCondition (hCondition);

// End of thread function

eBUS SDK:

// Create and open camera stream

PvStream *1Stream = PvStream::CreateAndOpen (plDeviceInfo, &lResult);

// Cast to specific stream interface type

PvStreamGEV *1StreamGEV = static cast<PvStreamGEV *>(lStream);

// Configure device streaming destination (only needed for GigE cameras)
1Result = 1DeviceGEV->SetStreamDestination (lStreamGEV-
>GetLocalIPAddress (), lStreamGEV->GetLocalPort());

// Create pipeline object

PvPipeline* 1Pipeline = new PvPipeline (lStream);

if (1lPipeline != NULL)

{
// And set the Buffer size and the Buffer count
1Pipeline->SetBufferSize (1DeviceGEV->GetPayloadSize());
IResult = lPipeline->SetBufferCount (BUFFER COUNT) ;

}

// Start acquisition thread here and pass in pointers to PvDeviceGEV,
PvStream, and PvPipeline via lpParameter

hAcgStreamThread = CreateThread (NULL, NULL,

(LPTHREAD START ROUTINE)AcquisitionThread, lpParameters, NULL, NULL);

// Thread function which continually acquires frames from a camera
void AcquisitionThread (LPVOID lpParameters)
{
PvResult 1lResult;
PvDeviceGEV *1Device = (PvDeviceGEV*)1GEVDevice;
// Obtain pointers PvDeviceGEV *1GEVDevice, PvPipeline* 1Pipeline,
PvStream* 1Stream from lpParameters somehow

// Get device parameters and map the AcquisitionStart and
AcquisitionStop commands

PvGenParameterArray *lDeviceParams = lDevice->GetParameters();
PvGenCommand *1AcgStart = dynamic cast<PvGenCommand
*>(1lDeviceParams->Get ("AcquisitionStart™));

PvGenCommand *1AcgStop = dynamic cast<PvGenCommand *>(lDeviceParams-
>Get ("AcquisitionStop"));

www.jai.com 8 See the possibilities

TNE-022A-20190402-00

Technical Note
JAI SDK to eBUS SDK Migration Guide

// Start pipeline
1Result = 1lPipeline->Start();

// Enable streaming
1Result = lDevice->StreamEnable () ;

// Send Start command
1Result = 1lAcgStart->Execute();

// Loop and block until the next buffer is available, timeout after
1000ms
PvBuffer *1Buffer = NULL;
PvResult lOperationResult;
while (bLoopCondition == true)
{
1Result = 1Pipeline->RetrieveNextBuffer (&1Buffer, 1000,
&1lOperationResult) ;
if (1lResult.IsOK() && lOperationResult.IsOK())
{
// Do something with buffer
//

// Release the buffer back to the pipeline
1Result = 1lPipeline->ReleaseBuffer (1Buffer);

}

// Now send Stop command
1lResult = 1lAcgStop->Execute();

// Disable streaming on the device
lResult = 1lDevice->StreamDisable ()

// Stop the pipeline
1Result = 1Pipeline->Stop();

3.4 Freeing resources and closing cameras

In the JAI SDK cleanup consists of closing any handles and calling the appropriate close function for JAI
objects in reverse order of their creation. If buffers were manually allocated, these will also need to
be removed from driver use and then freed.

In eBUS cleanup is relatively straightforward. Any created objects should be stopped or closed in
reverse order of their creation and their destructors will handle the freeing of any allocated resources.

www.jai.com 9 See the possibilities

TNE-022A-20190402-00

Technical Note
JAI SDK to eBUS SDK Migration Guide

JAI SDK:
// Stop acquisition and wait for any in-flight buffers to arrive
rc = J Camera ExecuteCommand (hCamera, "AcquisitionStop");

Sleep (300); // 300ms should be more than enough

// Handle buffer cleanup
// Flush image queues in case there are images pending then unprepare
and delete buffers
J DataStream FlushQueue (hDataStream, ACQ QUEUE INPUT TO OUTPUT) ;
J DataStream FlushQueue (hDataStream, ACQ QUEUE OUTPUT DISCARD) ;
for(i = 0 ; i < NUM OF BUFFERS; i++) {

// Remove each buffer from the acquisition engine

void *pBufferPtr, *pPrivatelInfo;

J DataStream RevokeBuffer (hDataStream, pAcgBufferID[i],
&pBufferPtr , &pPrivatelInfo);

if (pAcgBuffer[i]) {

delete pAcqgBuffer[il];

}

pAcgBuffer[i] = NULL;

pAcgBufferID[i] = 0;
}

// Close image stream thread handle
CloseHandle (hAcgStreamThread) ;

// Close data stream
rc = J DataStream Close (hDataStream);

// Close view window
rc = J Image CloseViewWindow (hView) ;

// Close the camera
rc = J Camera Close (hCamera);

// Close the factory
rc = J Factory Close (hFactory);

eBUS SDK:

// Send AcquisitionStop command
1Result = 1lAcgStop->Execute();

// Disable streaming on the device
1Result = 1lDevice->StreamDisable () ;

// Stop the pipeline
1Result = 1lPipeline->Stop();

// Clean up display window if created

www.jai.com 10 See the possibilities

TNE-022A-20190402-00

Technical Note
JAI SDK to eBUS SDK Migration Guide

if (poDisplay) {
poDisplay->Close () ;
delete poDisplay;
poDisplay = NULL;

}

// Close and free stream

1Result = 1StreamList[i]->Close ()
PvStream: :Free (1lStreamList[i]);
1StreamList[i] = NULL;

// Disconnect device

PvDevice *1Device = (PvDevice*)1lGEVDeviceList[i];
PvDevice: :Free (1lDevice);

1GEVDevicelList[i] = NULL;

3.5 .NET API differences

Since the PvDotNet classes are just wrapper classes around the C++ classes, there are almost no
appreciable differences between the two APIs. It should be relatively easy to translate C++ classes and
methods to their .NET equivalents.

4. FAQ - Additional Questions
4.1 | have JAI CXP cameras - can | use the eBUS SDK with them?

’

No. eBUS does not support GenTL so it cannot be used to control cameras that use third-party vendors
framegrabbers for acquisition.

4.2 Can eBUS co-exist with Cognex VisionPro?

Unfortunately, it cannot. VisionPro uses a licensed version of Pleora’s Universal Pro GigE driver that is
not compatible with the version included with eBUS and this prevents both packages from being
installed on the same system.

Author: Gordon Rice (gr@jai.com)

End.

www.jai.com 11 See the possibilities

mailto:gr@jai.com

Technical Note
JAI SDK to eBUS SDK Migration Guide

Revision History

TNE-022A-20190402-00

Revision Date Changes

0 2019/04/02 New release

Www.jai.com

12

See the possibilities

