灯光选择简介

灯光选择介绍:

本文件的背景和目的

JAI相机应用广泛。在每个应用场景中,图像采集方法和图像处理方法都稍稍不同。为了给特定的检查或应用捕捉最有用的图像,选择适当的光源是关键因素之一。

本文介绍了如何根据您的应用和相机类型选择合适的光源。

1. 波长

首要考虑的一件事是为您的应用场景选择捕捉图像时的所需波长。图1表明在这个初始步骤中,您需要考虑的波长。

图1 - 光的波长图

1.1 人类可见光

如果您试图检测的缺陷或您需要捕捉的信息可以被人眼看到并识别,那么在大多数情况下,您可以使用的光源的波长处于400纳米至700纳米之间。大多数JAI相机在光谱的可见范围内提供出色的图像,包括Go系列、Spark系列、Apex系列和Sweep系列的相机。

对于涉及单色相机/单色图像的应用场景,通常可以使用标准的白光LED,而不必关心具体的颜色参数。如果涉及到一些彩色的零件/图案,则可以针对零件/图案的颜色使用互补色的LED,以实现更高的对比度和更有效的检查。

灯光选择简介

补色LED使零件/图案反射的光量与背景反射的光量之间产生鲜明的差异,使零件/图案变暗并 "突出",因而便于分析。

图2中是一个色相圈。位于圆圈另一边的颜色是互补色。

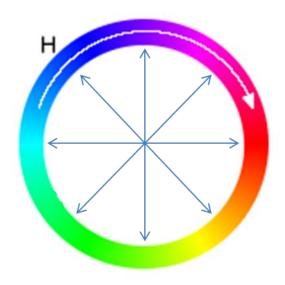


图 2 - 色相圈和互补色

1.2 近红外(NIR)

在近红外光 (700纳米-900纳米) 下捕捉图像时,由于较长的近红外波长具备穿透能力,导致一些颜色消失,一些材料变得透明。这取决于材料的性质和所使用的油墨或染料的类型,包括像皮肤和农作物之类的天然物质,以及包装之类的人造物品。

利用近红外灯光的这些特性可更有效地进行各种检查,如分析水果和蔬菜的新鲜度/腐烂程度,在食品检查过程中定位异物(石头、树枝、碎片),检查包装是否填充或密封不当,以及其他诸多应用。

许多光源制造商能提供专用的近红外光源来支持此类应用。另一方面,即使是广谱卤素光源 也能提供有效的近红外照明,或者结合其可见光特性,或者通过使用可见光切割过滤器来提供纯近红外照明。

灯光选择简介

不管使用上述哪种方法,Go系列、Spark系列和Sweep系列单色相机都能提供足够的灵敏度,为应用场景捕获所需的近红外图像。此外,Apex系列3传感器棱镜彩色相机,通常会阻挡近红外照明,以避免污染RGB的色准。不过该相机也支持特殊的"NF"(无滤镜)配置,去掉了红外切割滤镜。这些配置有意扩大红色通道的响应,也包括近红外信息,因此可用于需要增强红色/近红外响应的色彩应用场景。

近红外成像的最后一个选择是JAI的融合(Fusion)系列相机。融合系列相机可将多个光谱带结合到一个图像中。有几款型号配备了特定的近红外通道,不需要任何可见光切割过滤器。用户可以只从近红外通道捕捉图像,或者也可以将这些信息与其他通道结合起来,如可见光通道。

1.3 短波近红外(SWIR)

在SWIR光(1000纳米-3000纳米)下捕捉图像时,吸收SWIR光的材料会被捕捉为黑色,而另一些材料因SWIR波的深度穿透力而变得透明。实际效果取决于材料和光波长的组合。

利用这一特性,可以根据不同物质对SWIR光特定窄带波长的反应方式来进行识别。例如,在特定的波长下,水可以很容易被识别。

JAI的WA-1000D-CL (波浪系列) 相机有两个安装棱镜的传感器,每个传感器可以捕捉不同的波长。因此,该相机可以同时捕捉两幅图像,代表对两个不同波长的反应。通过处理这两幅图像,可以对材料进行更复杂的检查和分析。

2. 色温和白平衡

白平衡调整一般用于调整捕获的图像,使场景中的颜色在人眼看来是"正确的"。人类的大脑有能力调整自身的感知。例如一个红球,在不同的照明条件下,对我们来说是一样的。 另一方面,相机捕捉到的颜色数据可能干差万别,这取决于所用的光源。一般来说,白色光源可以有各种"色温",如图3所示。色温表是象征金属加热时的颜色变化方式。在较低的温度下,加热的金属会发出更多的黄色,而在较高的温度下,金属发出的光会有轻微的蓝色。白平衡的设计是为了调整颜色数据,以便去除照明本身的色调。因此,如果更换光源,建议重新调整白平衡。

灯光选择简介

Light	Colro Temperature	LED	Halogen	Fluorescent
Daylight, overcast	6500K	~		~
Horizon daylight	5000K	~		~
Cool White	4500K	~		V
Studio Lamp	3200K	~		V
Soft White	2700K	~	~	V

图 3 - 光源和色温

3. 偏振光

在正常光线(非偏振光)中,光波没有特定的方向。相反,光波在各个方向振荡。另一方面,偏振光有一个特定的方向(垂直、水平、对角线等)。例如,当非偏振光从光滑(镜面)表面反射时,相当一部分反射光倾向于在与表面平行的平面内振荡(即从湖面反射的光波倾向于在水平方向上偏振)。

对于视觉应用而言,偏振光的特性可以用来提高物体的识别度。

例如,下图显示了由JAI偏振相机拍摄的四张图像。反光标签的眩光主要由偏振光组成。这四张图像显示了偏振滤镜设置在90、45、0和135度(从左上角顺时针方向)时的四种结果。在这个案例中,90度(左上角)的滤光片最有效地阻挡了水平偏振的反射强光,使标签完全可读。在其他应用中,偏振光可以用来根据不同的反射/偏振特性来区分两个物品。

图 4 - 偏振光和眩光

4. LED、卤素和荧光灯

对于机器视觉应用,你可以选择多种照明类型。最常见的是LED、卤素灯和荧光灯。 卤素灯是一种宽光谱的光源,通常能覆盖很宽的波长范围,亮度很高。如前所述,如果你需要将光谱减少到一个较窄的波段,可以在卤素照明中使用一个波长切割过滤器。由于其亮度和宽光谱特性,卤素灯适用于许多类型的应用场景。然而,它的弱点是寿命较短,反应缓慢。

LED照明有多种波长可供选择。白光LED覆盖了人类的可见光范围,并且可以调到各种色温。LED也可以呈现特定的颜色,包括宽波长和窄波长,也具有非可见光的配置,如NIR、SWIR或UV。LED的优点包括寿命长、反应快、外形尺寸选择范围大。

荧光灯的寿命更长,成本比卤素灯低。另一方面,它的尺寸取决于它的功率,小尺寸的制造 很困难。尽管荧光灯带宽通常较窄,色彩平衡通常也有很大不同,但其光谱反应与卤素灯类 似。

下表概述了每种照明类型的主要特征。

灯光选择简介

[tems	LED	Halogen	Fluorescent
Bandwidth of Wave Length	Narrow Bandwith is selectable	Wide Bandwith	Narrower Bandwith
Figure/Size	Each Light-emitting element is small. Figure variation of Light source equipment can be availabe by placing the elements into the equipment	Variation of figure is limited, but it can be small,	Size is up to power.
Life	©	Δ	0
Brightness	0	©	0
Response	©	×	×
Cost	0	Δ	©

 \bigcirc = Excellent \bigcirc = Good \triangle = Fair \bigcirc = Poor

图 5 - 照明类型的比较

灯光选择简介

Revision History

Revision	Date	Changes
0	2019/03/11	New release
1	2019/04/05	Edited to add the word "rot" on Pg. 2 to clarify freshness analysis